Waveforms¶
- genalyzer.cos(nsamples, fs, ampl, freq, phase=0.0, td=0.0, tj=0.0)¶
Generate cosine waveform
- Args:
nsamples(int) : Number of samplesfs(double) : Sample rate (S/s)ampl(double) : Amplitudefreq(double) : Frequency (Hz)phase(double) : Phase (rad)td(double) : Time delay (s)tj(double) : RMS Aperture jitter (s)- Returns:
out(ndarray) :float64numpyarray consisting of Cosine waveform
- genalyzer.gaussian(nsamples, mean, sd)¶
Generate Gaussian random samples
- Args:
nsamples(int) : Number of samplesmean(double) : Meansd(double) : Standard deviation- Returns:
out(ndarray) :float64numpyarray consisting of Gaussian random samples
- genalyzer.ramp(nsamples, start, stop, noise)¶
Generate ramp waveform
- Args:
nsamples(int) : Number of samplesstart(double) : Start valuestop(double) : Stop valuenoise(double) : RMS noise- Returns:
out(ndarray) :float64numpyarray consisting of ramp waveform
- genalyzer.sin(nsamples, fs, ampl, freq, phase=0.0, td=0.0, tj=0.0)¶
Generate sine waveform
- Args:
nsamples(int) : Number of samplesfs(double) : Sample rate (S/s)ampl(double) : Amplitudefreq(double) : Frequency (Hz)phase(double) : Phase (rad)td(double) : Time delay (s)tj(double) : RMS Aperture jitter (s)- Returns:
out(ndarray) :float64numpyarray consisting of Sine waveform
- genalyzer.wf_analysis(a)¶
Run waveform analysis
- Args:
a(ndarray) : Input array of typeint16,int32, orint64- Returns:
Returns:
results(dict) : Dictionary containing all waveform analysis results- Notes:
Every Key:Value pair in the dictionary is
str:float.- The dictionary contains the following keys:
signaltype: Signal type: 0=Real, 1=Complexmin: Minumum valuemax: Maximum valuemid: Middle value ((max + min) / 2)range: Range (max - min)avg: Average valuerms: RMS valuermsac: RMS value with DC removedmin_index: Index of first occurence of minimum valuemax_index: Index of first occurence of maximum value