AXI AD3552R#
The AXI AD3552R IP core can be used to interface the AD3552R, a low drift, ultra-fast, 16-bit accuracy, current output digital-to-analog converter (DAC) that can be configured in multiple voltage span ranges.
Features#
AXI-based configuration
Vivado compatible
8b register read/write SDR/DDR
16b register read/write SDR/DDR
data stream SDR/DDR ( clk_in/8 or clk_in/4 update rate)
selectable input source: DMA/ADC/TEST_RAMP
data out clock(SCLK) has clk_in/8 frequency when the converter is configured and clk_in/2 when the converter is in stream mode
the IP reference clock (clk_in) can have a maximum frequency of 132MHz
the IP has multiple device synchronization capability when the DMA is set as an input data source
Files#
Name |
Description |
---|---|
Verilog source for the AXI AD3552R. |
|
Verilog source for the AXI AD3552R channel. |
|
Verilog source for the AXI AD3552R core. |
|
Verilog source for the AD3552R interface module. |
|
Verilog source for the AD3552R interface module testbench. |
|
Setup script for the AD3552R interface module testbench. |
|
TCL script to generate the Vivado IP-integrator project. |
Block Diagram#
Configuration Parameters#
Name |
Description |
Default Value |
Choices/Range |
---|---|---|---|
ID |
Core ID should be unique for each IP in the system - 0 |
0 |
|
FPGA_TECHNOLOGY |
Encoded value describing the technology/generation of the FPGA device (Arria 10/7series) |
0 |
Unknown (0), 7series (1), ultrascale (2), ultrascale+ (3), versal (4) |
FPGA_FAMILY |
Encoded value describing the family variant of the FPGA device(e.g., SX, GX, GT) |
0 |
Unknown (0), artix (1), kintex (2), virtex (3), zynq (4), versalprime (5), versalaicore (6), versalpremium (7) |
SPEED_GRADE |
Encoded value describing the FPGA’s speed-grade |
0 |
Unknown (0), -1 (10), -1L (11), -1H (12), -1HV (13), -1LV (14), -2 (20), -2L (21), -2LV (22), -2MP (23), -2LVC (24), -2LVI (25), -3 (30) |
DEV_PACKAGE |
Encoded value describing the device package. The package might affect high-speed interfaces |
0 |
Unknown (0), rf (1), fl (2), ff (3), fb (4), hc (5), fh (6), cs (7), cp (8), ft (9), fg (10), sb (11), rb (12), rs (13), cl (14), sf (15), ba (16), fa (17), fs (18), fi (19), vs (20), ls (21) |
DDS_DISABLE |
Dds Disable. |
0 |
|
DDS_TYPE |
Dds Type. |
1 |
|
DDS_CORDIC_DW |
Dds Cordic Dw. |
16 |
|
DDS_CORDIC_PHASE_DW |
Dds Cordic Phase Dw. |
16 |
Interface#
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
s_axi_awaddr |
AWADDR |
in [15:0] |
|
s_axi_awprot |
AWPROT |
in [2:0] |
|
s_axi_awvalid |
AWVALID |
in |
|
s_axi_awready |
AWREADY |
out |
|
s_axi_wdata |
WDATA |
in [31:0] |
|
s_axi_wstrb |
WSTRB |
in [3:0] |
|
s_axi_wvalid |
WVALID |
in |
|
s_axi_wready |
WREADY |
out |
|
s_axi_bresp |
BRESP |
out [1:0] |
|
s_axi_bvalid |
BVALID |
out |
|
s_axi_bready |
BREADY |
in |
|
s_axi_araddr |
ARADDR |
in [15:0] |
|
s_axi_arprot |
ARPROT |
in [2:0] |
|
s_axi_arvalid |
ARVALID |
in |
|
s_axi_arready |
ARREADY |
out |
|
s_axi_rdata |
RDATA |
out [31:0] |
|
s_axi_rresp |
RRESP |
out [1:0] |
|
s_axi_rvalid |
RVALID |
out |
|
s_axi_rready |
RREADY |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
s_axi_aclk |
CLK |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
s_axi_aresetn |
RST |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
dac_clk |
CLK |
in |
Physical Port |
Direction |
Dependency |
Description |
---|---|---|---|
dma_data |
in [31:0] |
Data from the DMAC when input source is set to DMA_DATA. |
|
valid_in_dma |
in |
Valid from the DMAC. |
|
valid_in_dma_sec |
in |
Valid from a secondary DMAC if synchronization is needed. |
|
dac_data_ready |
out |
Data ready signal for the DMAC. |
|
data_in_a |
in [15:0] |
Data for channel 1 when input source is set to ADC_DATA. |
|
data_in_b |
in [15:0] |
Data for channel 2 when input source is set to ADC_DATA. |
|
valid_in_a |
in |
Valid for channel 1. |
|
valid_in_b |
in |
Valid for channel 2. |
|
dac_sclk |
out |
Serial clock. |
|
dac_csn |
out |
Serial chip select. |
|
sdio_i |
in [3:0] |
Serial data in from the DAC. |
|
sdio_o |
out [3:0] |
Serial data out to the DAC. |
|
sdio_t |
out |
I/O buffer control signal. |
|
external_sync |
in |
External synchronization flag from another axi_ad3552r IP. |
|
sync_ext_device |
out |
Start_sync external device to another axi_ad3552r IP. |
Detailed Architecture#
Detailed Description#
The top module instantiates:
The axi_ad3552r interface module
The axi_ad3552r core module
The AXI handling interface
The axi_ad3552r_if has the state machine that controls the quad SPI interface. The axi_ad3552r_core module instantiates 2 axi_ad3552r channel modules.
Register Map#
For the AXI_AD3552R control used registers from DAC Common are:
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x11 |
0x44 |
CNTRL_1 |
DAC Interface Control & Status |
|||
[1:1] |
EXT_SYNC_ARM |
RW |
0x0 |
Setting this bit will arm the trigger mechanism sensitive to an external sync signal. Once the external sync signal goes high it synchronizes channels within a DAC, and across multiple instances. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
0x12 |
0x48 |
CNTRL_2 |
DAC Interface Control & Status |
|||
[16:16] |
SDR_DDR_N |
RW |
0x0 |
Interface type (1 represents SDR, 0 represents DDR) |
||
[14:14] |
SYMB_8_16B |
RW |
0x0 |
Select number of bits for symbol format mode (1 represents 8b, 0 represents 16b) |
||
0x21 |
0x84 |
DAC_CUSTOM_WR |
DAC Write Configuration Data |
|||
[23:0] |
DATA_WRITE |
RW |
0x000000 |
Configuration data for the AD3552R device registers. 8/16 LSB are used depending on the 8b/16b configuration. |
||
0x22 |
0x88 |
UI_STATUS |
User Interface Status |
|||
[4:4] |
IF_BUSY |
RO |
0x0 |
Interface busy. If set, indicates that the data interface is busy. |
||
0x23 |
0x8c |
DAC_CUSTOM_CTRL |
DAC Control Configuration Data |
|||
[31:24] |
ADDRESS |
RW |
0x00 |
Register address when the AD3552R is configured or stream start address when the FSM is in stream state. |
||
[1:1] |
STREAM |
RW |
0x0 |
Setting this bit will trigger a stream transfer based on the SDR/DDR configuration and address. |
||
[0:0] |
TRANSFER_DATA |
RW |
0x0 |
Setting this bit will trigger a single transfer based on the SDR/DDR, 8b/16b configuration, address, and data_write. |
Access Type |
Name |
Description |
---|---|---|
RW |
Read-write |
Reads will return the current register value. Writes will change the current register value. |
For the AXI_AD3552R control used registers from DAC Channel are:
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x100 |
0x400 |
CHAN_CNTRL0_7 |
DAC Channel Control & Status (channel - 0) |
|||
[3:0] |
DAC_DDS_SEL |
RW |
0x0 |
Select internal data sources (available only if the DAC supports it).
|
||
0x116 |
0x458 |
CHAN_CNTRL1_7 |
DAC Channel Control & Status (channel - 1) |
|||
[3:0] |
DAC_DDS_SEL |
RW |
0x0 |
Select internal data sources (available only if the DAC supports it).
|
Access Type |
Name |
Description |
---|---|---|
RW |
Read-write |
Reads will return the current register value. Writes will change the current register value. |
For reference, all the register map templates are:
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x0 |
0x0 |
VERSION |
Version and Scratch Registers |
|||
[31:0] |
VERSION |
RO |
0x00000000 |
Version number. Unique to all cores. |
||
0x1 |
0x4 |
ID |
Version and Scratch Registers |
|||
[31:0] |
ID |
RO |
0x00000000 |
Instance identifier number. |
||
0x2 |
0x8 |
SCRATCH |
Version and Scratch Registers |
|||
[31:0] |
SCRATCH |
RW |
0x00000000 |
Scratch register. |
||
0x3 |
0xc |
CONFIG |
Version and Scratch Registers |
|||
[0:0] |
IQCORRECTION_DISABLE |
RO |
0x0 |
If set, indicates that the IQ Correction module was not implemented. (as a result of a configuration of the IP instance) |
||
[1:1] |
DCFILTER_DISABLE |
RO |
0x0 |
If set, indicates that the DC Filter module was not implemented. (as a result of a configuration of the IP instance) |
||
[2:2] |
DATAFORMAT_DISABLE |
RO |
0x0 |
If set, indicates that the Data Format module was not implemented. (as a result of a configuration of the IP instance) |
||
[3:3] |
USERPORTS_DISABLE |
RO |
0x0 |
If set, indicates that the logic related to the User Data Format (e.g. decimation) was not implemented. (as a result of a configuration of the IP instance) |
||
[4:4] |
MODE_1R1T |
RO |
0x0 |
If set, indicates that the core was implemented in 1 channel mode. (e.g. refer to AD9361 data sheet) |
||
[5:5] |
DELAY_CONTROL_DISABLE |
RO |
0x0 |
If set, indicates that the delay control is disabled for this IP. (as a result of a configuration of the IP instance) |
||
[6:6] |
DDS_DISABLE |
RO |
0x0 |
If set, indicates that the DDS is disabled for this IP. (as a result of a configuration of the IP instance) |
||
[7:7] |
CMOS_OR_LVDS_N |
RO |
0x0 |
CMOS or LVDS mode is used for the interface. (as a result of a configuration of the IP instance) |
||
[8:8] |
PPS_RECEIVER_ENABLE |
RO |
0x0 |
If set, indicates the PPS receiver is enabled. (as a result of a configuration of the IP instance) |
||
[9:9] |
SCALECORRECTION_ONLY |
RO |
0x0 |
If set, indicates that the IQ Correction module implements only scale correction. IQ correction must be enabled. (as a result of a configuration of the IP instance) |
||
[12:12] |
EXT_SYNC |
RO |
0x0 |
If set the transport layer cores (ADC/DAC) have implemented the support for external synchronization signal. |
||
[13:13] |
RD_RAW_DATA |
RO |
0x0 |
If set, the ADC has the capability to read raw data in register CHAN_RAW_DATA from adc_channel. |
||
0x4 |
0x10 |
PPS_IRQ_MASK |
PPS Interrupt mask |
|||
[0:0] |
PPS_IRQ_MASK |
RW |
0x1 |
Mask bit for the 1PPS receiver interrupt |
||
0x7 |
0x1c |
FPGA_INFO |
FPGA device information library/scripts/adi_intel_device_info_enc.tcl (Intel encoded values) library/scripts/adi_xilinx_device_info_enc.tcl (Xilinx encoded values) |
|||
[31:24] |
FPGA_TECHNOLOGY |
RO |
0x00 |
Encoded value describing the technology/generation of the FPGA device (arria 10/7series) |
||
[23:16] |
FPGA_FAMILY |
RO |
0x00 |
Encoded value describing the family variant of the FPGA device(e.g., SX, GX, GT or zynq, kintex, virtex) |
||
[15:8] |
SPEED_GRADE |
RO |
0x00 |
Encoded value describing the FPGA’s speed-grade |
||
[7:0] |
DEV_PACKAGE |
RO |
0x00 |
Encoded value describing the device package. The package might affect high-speed interfaces |
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x10 |
0x40 |
RSTN |
DAC Interface Control & Status |
|||
[2:2] |
CE_N |
RW |
0x0 |
Clock enable, default is enabled(0x0). An inverse version of the signal is exported out of the module to control clock enables |
||
[1:1] |
MMCM_RSTN |
RW |
0x0 |
MMCM reset only (required for DRP access). Reset, default is IN-RESET (0x0), software must write 0x1 to bring up the core. |
||
[0:0] |
RSTN |
RW |
0x0 |
Reset, default is IN-RESET (0x0), software must write 0x1 to bring up the core. |
||
0x11 |
0x44 |
CNTRL_1 |
DAC Interface Control & Status |
|||
[0:0] |
SYNC |
RW |
0x0 |
Setting this bit synchronizes channels within a DAC, and across multiple instances. This bit self clears. |
||
[1:1] |
EXT_SYNC_ARM |
RW |
0x0 |
Setting this bit will arm the trigger mechanism sensitive to an external sync signal. Once the external sync signal goes high it synchronizes channels within a DAC, and across multiple instances. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
[2:2] |
EXT_SYNC_DISARM |
RW |
0x0 |
Setting this bit will disarm the trigger mechanism sensitive to an external sync signal. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
[8:8] |
MANUAL_SYNC_REQUEST |
RW |
0x0 |
Setting this bit will issue an external sync event if it is hooked up inside the fabric. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
0x12 |
0x48 |
CNTRL_2 |
DAC Interface Control & Status |
|||
[16:16] |
SDR_DDR_N |
RW |
0x0 |
Interface type (1 represents SDR, 0 represents DDR) |
||
[15:15] |
SYMB_OP |
RW |
0x0 |
Select data symbol format mode (0x1) |
||
[14:14] |
SYMB_8_16B |
RW |
0x0 |
Select number of bits for symbol format mode (1 represents 8b, 0 represents 16b) |
||
[12:8] |
NUM_LANES |
RW |
0x00 |
Number of active lanes (1 : CSSI 1-lane, LSSI 1-lane, 2 : LSSI 2-lane, 4 : CSSI 4-lane) |
||
[7:7] |
PAR_TYPE |
RW |
0x0 |
Select parity even (0x0) or odd (0x1). |
||
[6:6] |
PAR_ENB |
RW |
0x0 |
Select parity (0x1) or frame (0x0) mode. |
||
[5:5] |
R1_MODE |
RW |
0x0 |
Select number of RF channels 1 (0x1) or 2 (0x0). |
||
[4:4] |
DATA_FORMAT |
RW |
0x0 |
Select data format 2’s complement (0x0) or offset binary (0x1). NOT-APPLICABLE if DAC_DP_DISABLE is set (0x1). |
||
[3:0] |
RESERVED |
NA |
0x0 |
Reserved |
||
0x13 |
0x4c |
RATECNTRL |
DAC Interface Control & Status |
|||
[7:0] |
RATE |
RW |
0x00 |
The effective dac rate (the maximum possible rate is dependent on the interface clock). The samples are generated at 1/RATE of the interface clock. |
||
0x14 |
0x50 |
FRAME |
DAC Interface Control & Status |
|||
[0:0] |
FRAME |
RW |
0x0 |
The use of frame is device specific. Usually setting this bit to 1 generates a FRAME (1 DCI clock period) pulse on the interface. This bit self clears. |
||
0x15 |
0x54 |
STATUS1 |
DAC Interface Control & Status |
|||
[31:0] |
CLK_FREQ |
RO |
0x00000000 |
Interface clock frequency. This is relative to the processor clock and in many cases is 100MHz. The number is represented as unsigned 16.16 format. Assuming a 100MHz processor clock the minimum is 1.523kHz and maximum is 6.554THz. The actual interface clock is CLK_FREQ * CLK_RATIO (see below). Note that the actual sampling clock may not be the same as the interface clock- software must consider device specific implementation parameters to calculate the final sampling clock. |
||
0x16 |
0x58 |
STATUS2 |
DAC Interface Control & Status |
|||
[31:0] |
CLK_RATIO |
RO |
0x00000000 |
Interface clock ratio - as a factor actual received clock. This is implementation specific and depends on any serial to parallel conversion and interface type (ddr/sdr/qdr). |
||
0x17 |
0x5c |
STATUS3 |
DAC Interface Control & Status |
|||
[0:0] |
STATUS |
RO |
0x0 |
Interface status, if set indicates no errors. If not set, there are errors, software may try resetting the cores. |
||
0x18 |
0x60 |
DAC_CLKSEL |
DAC Interface Control & Status |
|||
[0:0] |
DAC_CLKSEL |
RW |
0x0 |
Allows changing of the clock polarity. Note: its default value is CLK_EDGE_SEL |
||
0x1a |
0x68 |
SYNC_STATUS |
DAC Synchronization Status register |
|||
[0:0] |
DAC_SYNC_STATUS |
RO |
0x0 |
DAC synchronization status. Will be set to 1 while waiting for the external synchronization signal This bit has an effect only the EXT_SYNC synthesis parameter is set. |
||
0x1c |
0x70 |
DRP_CNTRL |
DRP Control & Status |
|||
[28:28] |
DRP_RWN |
RW |
0x0 |
DRP read (0x1) or write (0x0) select (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[27:16] |
DRP_ADDRESS |
RW |
0x000 |
DRP address, designs that contain more than one DRP accessible primitives have selects based on the most significant bits (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[15:0] |
RESERVED |
RO |
0x0000 |
Reserved for backwards compatibility |
||
0x1d |
0x74 |
DRP_STATUS |
DAC Interface Control & Status |
|||
[17:17] |
DRP_LOCKED |
RO |
0x0 |
If set indicates the MMCM/PLL is locked |
||
[16:16] |
DRP_STATUS |
RO |
0x0 |
If set indicates busy (access pending). The read data may not be valid if this bit is set (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[15:0] |
RESERVED |
RO |
0x0000 |
Reserved for backwards compatibility |
||
0x1e |
0x78 |
DRP_WDATA |
DAC Interface Control & Status |
|||
[15:0] |
DRP_WDATA |
RW |
0x0000 |
DRP write data (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
0x1f |
0x7c |
DRP_RDATA |
DAC Interface Control & Status |
|||
[15:0] |
DRP_RDATA |
RO |
0x0000 |
DRP read data (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
0x20 |
0x80 |
DAC_CUSTOM_RD |
DAC Read Configuration Data |
|||
[31:0] |
DAC_CUSTOM_RD |
RO |
0x00000000 |
Custom Read of the available registers. |
||
0x21 |
0x84 |
DAC_CUSTOM_WR |
DAC Write Configuration Data |
|||
[31:0] |
DAC_CUSTOM_WR |
RW |
0x00000000 |
Custom Write of the available registers. |
||
0x22 |
0x88 |
UI_STATUS |
User Interface Status |
|||
[4:4] |
IF_BUSY |
RO |
0x0 |
Interface busy. If set, indicates that the data interface is busy. |
||
[1:1] |
UI_OVF |
RW1C |
0x0 |
User Interface overflow. If set, indicates an overflow occurred during data transfer at the user interface (FIFO interface). Software must write a 0x1 to clear this register bit. |
||
[0:0] |
UI_UNF |
RW1C |
0x0 |
User Interface underflow. If set, indicates an underflow occurred during data transfer at the user interface (FIFO interface). Software must write a 0x1 to clear this register bit. |
||
0x23 |
0x8c |
DAC_CUSTOM_CTRL |
DAC Control Configuration Data |
|||
[31:0] |
DAC_CUSTOM_CTRL |
RW |
0x00000000 |
Custom Control of the available registers. |
||
0x28 |
0xa0 |
USR_CNTRL_1 |
DAC User Control & Status |
|||
[7:0] |
USR_CHANMAX |
RW |
0x00 |
This indicates the maximum number of inputs for the channel data multiplexers. User may add different processing modules as inputs to the dac. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x2e |
0xb8 |
DAC_GPIO_IN |
DAC GPIO inputs |
|||
[31:0] |
DAC_GPIO_IN |
RO |
0x00000000 |
This reads auxiliary GPI pins of the DAC core |
||
0x2f |
0xbc |
DAC_GPIO_OUT |
DAC GPIO outputs |
|||
[31:0] |
DAC_GPIO_OUT |
RW |
0x00000000 |
This controls auxiliary GPO pins of the DAC core NOT-APPLICABLE if GPIO_DISABLE is set (0x1). |
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x100 + 0x16*n |
0x400 + 0x58*n |
CHAN_CNTRLn_1 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[21:16] |
DDS_PHASE_DW |
RO |
0x00 |
The DDS phase data width offers the HDL parameter configuration with the same name. This information is used in conjunction with CHAN_CNTRL_9 and CHAN_CNTRL_10. More info at AD Direct Digital Synthesis. |
||
[15:0] |
DDS_SCALE_1 |
RW |
0x0000 |
The DDS scale for tone 1. Sets the amplitude of the tone. The format is 1.1.14 fixed point (signed, integer, fractional). The DDS in general runs on 16-bits, note that if you do use both channels and set both scale to 0x4000, it is over-range. The final output is (tone_1_fullscale * scale_1) + (tone_2_fullscale * scale_2). NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
0x101 + 0x16*n |
0x404 + 0x58*n |
CHAN_CNTRLn_2 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
DDS_INIT_1 |
RW |
0x0000 |
The DDS phase initialization for tone 1. Sets the initial phase offset of the tone. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
[15:0] |
DDS_INCR_1 |
RW |
0x0000 |
Sets the frequency of the phase accumulator. Its value can be calculated by \(INCR = (f_{out} * 2^{16}) * clkratio / f_{if}\); where f_out is the generated output frequency, and f_if is the frequency of the digital interface, and clock_ratio is the ratio between the sampling clock and the interface clock. If DDS_PHASE_DW is greater than 16(from CHAN_CNTRL_1), the phase increment for tone 1 is extended in CHAN_CNTRL_9. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
0x102 + 0x16*n |
0x408 + 0x58*n |
CHAN_CNTRLn_3 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[15:0] |
DDS_SCALE_2 |
RW |
0x0000 |
The DDS scale for tone 2. Sets the amplitude of the tone. The format is 1.1.14 fixed point (signed, integer, fractional). The DDS in general runs on 16-bits, note that if you do use both channels and set both scale to 0x4000, it is over-range. The final output is (tone_1_fullscale * scale_1) + (tone_2_fullscale * scale_2). NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
0x103 + 0x16*n |
0x40c + 0x58*n |
CHAN_CNTRLn_4 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
DDS_INIT_2 |
RW |
0x0000 |
The DDS phase initialization for tone 2. Sets the initial phase offset of the tone. If DDS_PHASE_DW is greater than 16(from CHAN_CNTRL_1), the phase init for tone 2 is extended in CHAN_CNTRL_10. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
[15:0] |
DDS_INCR_2 |
RW |
0x0000 |
Sets the frequency of the phase accumulator. Its value can be calculated by \(INCR = (f_{out} * 2^{16}) * clkratio / f_{if}\); where f_out is the generated output frequency, and f_if is the frequency of the digital interface, and clock_ratio is the ratio between the sampling clock and the interface clock. If DDS_PHASE_DW is greater than 16(from CHAN_CNTRL_1), the phase increment for tone 2 is extended in CHAN_CNTRL_10. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
0x104 + 0x16*n |
0x410 + 0x58*n |
CHAN_CNTRLn_5 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
DDS_PATT_2 |
RW |
0x0000 |
The DDS data pattern for this channel. |
||
[15:0] |
DDS_PATT_1 |
RW |
0x0000 |
The DDS data pattern for this channel. |
||
0x105 + 0x16*n |
0x414 + 0x58*n |
CHAN_CNTRLn_6 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[2:2] |
IQCOR_ENB |
RW |
0x0 |
if set, enables IQ correction. NOT-APPLICABLE if DAC_DP_DISABLE is set (0x1). |
||
[1:1] |
DAC_LB_OWR |
RW |
0x0 |
If set, forces DAC_DDS_SEL to 0x8, loopback If DAC_LB_OWR and DAC_PN_OWR are both set, they are ignored |
||
[0:0] |
DAC_PN_OWR |
RW |
0x0 |
IF set, forces DAC_DDS_SEL to 0x09, device specific pnX If DAC_LB_OWR and DAC_PN_OWR are both set, they are ignored |
||
0x106 + 0x16*n |
0x418 + 0x58*n |
CHAN_CNTRLn_7 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[3:0] |
DAC_DDS_SEL |
RW |
0x0 |
Select internal data sources (available only if the DAC supports it).
|
||
0x107 + 0x16*n |
0x41c + 0x58*n |
CHAN_CNTRLn_8 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
IQCOR_COEFF_1 |
RW |
0x0000 |
IQ correction (if equipped) coefficient. If scale & offset is implemented, this is the scale value and the format is 1.1.14 (sign, integer and fractional bits). If matrix multiplication is used, this is the channel I coefficient and the format is 1.1.14 (sign, integer and fractional bits). NOT-APPLICABLE if IQCORRECTION_DISABLE is set (0x1). |
||
[15:0] |
IQCOR_COEFF_2 |
RW |
0x0000 |
IQ correction (if equipped) coefficient. If scale & offset is implemented, this is the offset value and the format is 2’s complement. If matrix multiplication is used, this is the channel Q coefficient and the format is 1.1.14 (sign, integer and fractional bits). NOT-APPLICABLE if IQCORRECTION_DISABLE is set (0x1). |
||
0x108 + 0x16*n |
0x420 + 0x58*n |
USR_CNTRLn_3 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[25:25] |
USR_DATATYPE_BE |
RW |
0x0 |
The user data type format- if set, indicates big endian (default is little endian). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[24:24] |
USR_DATATYPE_SIGNED |
RW |
0x0 |
The user data type format- if set, indicates signed (2’s complement) data (default is unsigned). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[23:16] |
USR_DATATYPE_SHIFT |
RW |
0x00 |
The user data type format- the amount of right shift for actual samples within the total number of bits. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[15:8] |
USR_DATATYPE_TOTAL_BITS |
RW |
0x00 |
The user data type format- number of total bits used for a sample. The total number of bits must be an integer multiple of 8 (byte aligned). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[7:0] |
USR_DATATYPE_BITS |
RW |
0x00 |
The user data type format- number of bits in a sample. This indicates the actual sample data bits. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x109 + 0x16*n |
0x424 + 0x58*n |
USR_CNTRLn_4 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
USR_INTERPOLATION_M |
RW |
0x0000 |
This holds the user interpolation M value of the channel that is currently being selected on the multiplexer above. The total interpolation factor is of the form M/N. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[15:0] |
USR_INTERPOLATION_N |
RW |
0x0000 |
This holds the user interpolation N value of the channel that is currently being selected on the multiplexer above. The total interpolation factor is of the form M/N. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x10a + 0x16*n |
0x428 + 0x58*n |
USR_CNTRLn_5 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[0:0] |
DAC_IQ_MODE |
RW |
0x0 |
Enable complex mode. In this mode the driven data to the DAC must be a sequence of I and Q sample pairs. |
||
[1:1] |
DAC_IQ_SWAP |
RW |
0x0 |
Allows IQ swapping in complex mode. Only takes effect if complex mode is enabled. |
||
0x10b + 0x16*n |
0x42c + 0x58*n |
CHAN_CNTRLn_9 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
DDS_INIT_1_EXTENDED |
RW |
0x0000 |
The extended DDS phase initialization for tone 1. Sets the initial phase offset of the tone. The extended init(phase) value should be calculated according to DDS_PHASE_DW value from CHAN_CNTRL_1 NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
[15:0] |
DDS_INCR_1_EXTENDED |
RW |
0x0000 |
Sets the frequency of tone 1’s phase accumulator. Its value can be calculated by \(INCR = (f_{out} * 2^{phaseDW}) * clkratio / f_{if}\); Where f_out is the generated output frequency, DDS_PHASE_DW value can be found in CHAN_CNTRL_1 in case DDS_PHASE_DW is not 16, f_if is the frequency of the digital interface, and clock_ratio is the ratio between the sampling clock and the interface clock. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
0x10c + 0x16*n |
0x430 + 0x58*n |
CHAN_CNTRLn_10 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
DDS_INIT_2_EXTENDED |
RW |
0x0000 |
The extended DDS phase initialization for tone 2. Sets the initial phase offset of the tone. The extended init(phase) value should be calculated according to DDS_PHASE_DW value from CHAN_CNTRL_2 NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
[15:0] |
DDS_INCR_2_EXTENDED |
RW |
0x0000 |
Sets the frequency of tone 2’s phase accumulator. Its value can be calculated by \(INCR = (f_{out} * 2^{phaseDW}) * clkratio / f_{if}\); Where f_out is the generated output frequency, DDS_PHASE_DW value can be found in CHAN_CNTRL_2 in case DDS_PHASE_DW is not 16, f_if is the frequency of the digital interface, and clock_ratio is the ratio between the sampling clock and the interface clock. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
Design Guidelines#
The control of the chip is done through the AXI_AD3552R IP.
The DAC interface must be connected to an IO buffer.
The example design uses a DMA to move the data from the memory to the CHIP quad SPI interface.
If the data needs to be processed in HDL before moving to DAC’s output, it can be done at the input of the IP (at the system level) or inside the axi_ad3552r_if interface module (at the IP level).
The example design uses a processor to program all the registers. If no processor is available in your system, you can create your IP starting from the interface module.
Software Support#
Linux device driver at drivers/iio/dac/ad3552r.c
Linux device driver documentation on wiki
No-OS device driver at drivers/dac/ad3552r
No-OS project at projects/ad3552r_fmcz
References#
HDL IP core at library/axi_ad3552r
HDL project at projects/ad3552r_evb