AXI AD9963#
The AXI AD9963 IP core can be used to interface the AD9963 chip. It features a dual 12-bit ADC working up to 100MSPS and a dual 12-bit DAC with up to 170MSPS. It also features a DLL which can provide clock for both the ADC and the DAC path.
More about the generic framework interfacing ADCs can be read in Generic AXI ADC and interfacing DACs in Generic AXI DAC.
Features#
AXI Lite control/status interface
PRBS monitoring
Hardware DC filtering
IQ/Scale correction
Internal DDS
Programmable line delays
Supports AMD Xilinx devices
Files#
Name |
Description |
---|---|
Verilog source for the AXI AD9963. |
|
Verilog source for the ADC Common regmap. |
|
Verilog source for the ADC Channel regmap. |
|
Verilog source for the DAC Common regmap. |
|
Verilog source for the DAC Channel regmap. |
Block Diagram#
Configuration Parameters#
Name |
Description |
Default Value |
Choices/Range |
---|---|---|---|
ID |
Core ID should be unique for each IP in the system |
0 |
|
FPGA_TECHNOLOGY |
Used to select between devices. |
0 |
Unknown (0), 7series (1), ultrascale (2), ultrascale+ (3), versal (4) |
FPGA_FAMILY |
Fpga Family. |
0 |
Unknown (0), artix (1), kintex (2), virtex (3), zynq (4), versalprime (5), versalaicore (6), versalpremium (7) |
SPEED_GRADE |
Speed Grade. |
0 |
Unknown (0), -1 (10), -1L (11), -1H (12), -1HV (13), -1LV (14), -2 (20), -2L (21), -2LV (22), -2MP (23), -2LVC (24), -2LVI (25), -3 (30) |
DEV_PACKAGE |
Dev Package. |
0 |
Unknown (0), rf (1), fl (2), ff (3), fb (4), hc (5), fh (6), cs (7), cp (8), ft (9), fg (10), sb (11), rb (12), rs (13), cl (14), sf (15), ba (16), fa (17), fs (18), fi (19), vs (20), ls (21) |
ADC_IODELAY_ENABLE |
Enable IODELAY for tuning the TRX interface |
0 |
|
IO_DELAY_GROUP |
The delay group name which is set for the delay controller |
dev_if_delay_group |
|
IODELAY_ENABLE |
Iodelay Enable. |
0 |
|
DAC_DDS_TYPE |
Dac Dds Type. |
1 |
|
DAC_DDS_CORDIC_DW |
Dac Dds Cordic Dw. |
14 |
|
DAC_DDS_CORDIC_PHASE_DW |
Dac Dds Cordic Phase Dw. |
13 |
|
DAC_DATAPATH_DISABLE |
Disable DAC processing blocks. Disables DDS |
0 |
|
ADC_USERPORTS_DISABLE |
Disable ADC userports |
0 |
|
ADC_DATAFORMAT_DISABLE |
Disable ADC data format processing block |
0 |
|
ADC_DCFILTER_DISABLE |
Disable ADC dc filtering processing block |
0 |
|
ADC_IQCORRECTION_DISABLE |
Disable ADC IQ corection processing block |
0 |
|
ADC_SCALECORRECTION_ONLY |
If IQ correction block is enabled and only the scale needs to be corrected, this should be set to 1 |
1 |
|
DELAY_REFCLK_FREQUENCY |
Delay Refclk Frequency. |
200 |
Interface#
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
s_axi_awaddr |
AWADDR |
in [15:0] |
|
s_axi_awprot |
AWPROT |
in [2:0] |
|
s_axi_awvalid |
AWVALID |
in |
|
s_axi_awready |
AWREADY |
out |
|
s_axi_wdata |
WDATA |
in [31:0] |
|
s_axi_wstrb |
WSTRB |
in [3:0] |
|
s_axi_wvalid |
WVALID |
in |
|
s_axi_wready |
WREADY |
out |
|
s_axi_bresp |
BRESP |
out [1:0] |
|
s_axi_bvalid |
BVALID |
out |
|
s_axi_bready |
BREADY |
in |
|
s_axi_araddr |
ARADDR |
in [15:0] |
|
s_axi_arprot |
ARPROT |
in [2:0] |
|
s_axi_arvalid |
ARVALID |
in |
|
s_axi_arready |
ARREADY |
out |
|
s_axi_rdata |
RDATA |
out [31:0] |
|
s_axi_rresp |
RRESP |
out [1:0] |
|
s_axi_rvalid |
RVALID |
out |
|
s_axi_rready |
RREADY |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
s_axi_aclk |
CLK |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
s_axi_aresetn |
RST |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
trx_clk |
CLK |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
tx_clk |
CLK |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
delay_clk |
CLK |
in |
ADC_IODELAY_ENABLE = 1 |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
adc_clk |
CLK |
out |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
adc_rst |
RST |
out |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
dac_clk |
CLK |
out |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
dac_rst |
RST |
out |
Physical Port |
Direction |
Dependency |
Description |
---|---|---|---|
trx_iq |
in |
CMOS input channel selection |
|
trx_data |
in [11:0] |
CMOS input data |
|
tx_iq |
out |
CMOS output channel selection |
|
tx_data |
out [11:0] |
CMOS output data |
|
dac_sync_in |
in |
DAC synchronization signal. It is generated by the master core and used by all the cores in the system. Only one of the IPs should be master |
|
dac_sync_out |
out |
DAC synchronization signal. It is generated by the master core and used by all the cores in the system. Only one of the cores should be master |
|
adc_enable_i |
out |
Set when the channel I is enabled, activated by software |
|
adc_valid_i |
out |
Set when valid data is available on the channel I |
|
adc_data_i |
out [15:0] |
Channel I data bus |
|
adc_enable_q |
out |
Set when the channel Q is enabled, activated by software |
|
adc_valid_q |
out |
Set when valid data is available on the channel Q |
|
adc_data_q |
out [15:0] |
Channel Q data bus |
|
adc_dovf |
in |
Data overflow input, from the DMA |
|
dac_enable_i |
out |
Set when the channel I is enabled, activated by software |
|
dac_valid_i |
out |
Set when valid data is available on the channel I |
|
dac_data_i |
in [15:0] |
Channel I data bus |
|
dma_valid_i |
in |
||
dac_enable_q |
out |
Set when the channel Q is enabled, activated by software |
|
dac_valid_q |
out |
Set when valid data is available on the channel Q |
|
dac_data_q |
in [15:0] |
Channel Q data bus |
|
dma_valid_q |
in |
||
dac_dunf |
in |
Data underflow input from the DMA |
Detailed Description#
The TRX (ADC) interface is set at 100MSPS, full duplex mode, double data rate (DDR), two channels. The clock comes from the AD9963 chip.
The TX (DAC) interface works at 75MSPS data rate with interpolation by 2 on the AD9963 chip. The DAC path inside AD9963 chip works at 150MHz, pushing part of the spurs outside the 100MHz bandwidth. The design assumes that the 75MHz clock is not available in the FPGA. To reduce the number of PLLs used in the FPGA, we are using AD9963 and a BUFR (divide by 2) to generate this clock. When the clock is generated by AD9963, DDR transfer is not available. The TX interface works at 150MHz, SDR.
Register Map#
The register map of the core contains instances of several generic register maps like ADC common, ADC channel, DAC common, DAC channel etc. The following table presents the base addresses of each instance, after that can be found the detailed description of each generic register map. The absolute address of a register should be calculated by adding the instance base address to the registers relative address.
DWORD |
BYTE |
Name |
Description |
---|---|---|---|
0x0000 |
0x0000 |
BASE |
See the Base table for more details. |
0x0000 |
0x0000 |
RX COMMON |
See the ADC Common table for more details. |
0x0000 |
0x0000 |
RX CHANNELS |
See the ADC Channel table for more details. |
0x1000 |
0x4000 |
TX COMMON |
See the DAC Common table for more details. |
0x1000 |
0x4000 |
TX CHANNELS |
See the DAC Channel table for more details. |
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x0 |
0x0 |
VERSION |
Version and Scratch Registers |
|||
[31:0] |
VERSION |
RO |
0x00000000 |
Version number. Unique to all cores. |
||
0x1 |
0x4 |
ID |
Version and Scratch Registers |
|||
[31:0] |
ID |
RO |
0x00000000 |
Instance identifier number. |
||
0x2 |
0x8 |
SCRATCH |
Version and Scratch Registers |
|||
[31:0] |
SCRATCH |
RW |
0x00000000 |
Scratch register. |
||
0x3 |
0xc |
CONFIG |
Version and Scratch Registers |
|||
[0:0] |
IQCORRECTION_DISABLE |
RO |
0x0 |
If set, indicates that the IQ Correction module was not implemented. (as a result of a configuration of the IP instance) |
||
[1:1] |
DCFILTER_DISABLE |
RO |
0x0 |
If set, indicates that the DC Filter module was not implemented. (as a result of a configuration of the IP instance) |
||
[2:2] |
DATAFORMAT_DISABLE |
RO |
0x0 |
If set, indicates that the Data Format module was not implemented. (as a result of a configuration of the IP instance) |
||
[3:3] |
USERPORTS_DISABLE |
RO |
0x0 |
If set, indicates that the logic related to the User Data Format (e.g. decimation) was not implemented. (as a result of a configuration of the IP instance) |
||
[4:4] |
MODE_1R1T |
RO |
0x0 |
If set, indicates that the core was implemented in 1 channel mode. (e.g. refer to AD9361 data sheet) |
||
[5:5] |
DELAY_CONTROL_DISABLE |
RO |
0x0 |
If set, indicates that the delay control is disabled for this IP. (as a result of a configuration of the IP instance) |
||
[6:6] |
DDS_DISABLE |
RO |
0x0 |
If set, indicates that the DDS is disabled for this IP. (as a result of a configuration of the IP instance) |
||
[7:7] |
CMOS_OR_LVDS_N |
RO |
0x0 |
CMOS or LVDS mode is used for the interface. (as a result of a configuration of the IP instance) |
||
[8:8] |
PPS_RECEIVER_ENABLE |
RO |
0x0 |
If set, indicates the PPS receiver is enabled. (as a result of a configuration of the IP instance) |
||
[9:9] |
SCALECORRECTION_ONLY |
RO |
0x0 |
If set, indicates that the IQ Correction module implements only scale correction. IQ correction must be enabled. (as a result of a configuration of the IP instance) |
||
[12:12] |
EXT_SYNC |
RO |
0x0 |
If set the transport layer cores (ADC/DAC) have implemented the support for external synchronization signal. |
||
[13:13] |
RD_RAW_DATA |
RO |
0x0 |
If set, the ADC has the capability to read raw data in register CHAN_RAW_DATA from adc_channel. |
||
0x4 |
0x10 |
PPS_IRQ_MASK |
PPS Interrupt mask |
|||
[0:0] |
PPS_IRQ_MASK |
RW |
0x1 |
Mask bit for the 1PPS receiver interrupt |
||
0x7 |
0x1c |
FPGA_INFO |
FPGA device information library/scripts/adi_intel_device_info_enc.tcl (Intel encoded values) library/scripts/adi_xilinx_device_info_enc.tcl (Xilinx encoded values) |
|||
[31:24] |
FPGA_TECHNOLOGY |
RO |
0x00 |
Encoded value describing the technology/generation of the FPGA device (arria 10/7series) |
||
[23:16] |
FPGA_FAMILY |
RO |
0x00 |
Encoded value describing the family variant of the FPGA device(e.g., SX, GX, GT or zynq, kintex, virtex) |
||
[15:8] |
SPEED_GRADE |
RO |
0x00 |
Encoded value describing the FPGA’s speed-grade |
||
[7:0] |
DEV_PACKAGE |
RO |
0x00 |
Encoded value describing the device package. The package might affect high-speed interfaces |
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x10 |
0x40 |
RSTN |
ADC Interface Control & Status |
|||
[2:2] |
CE_N |
RW |
0x0 |
Clock enable, default is enabled(0x0). An inverse version of the signal is exported out of the module to control clock enables |
||
[1:1] |
MMCM_RSTN |
RW |
0x0 |
MMCM reset only (required for DRP access). Reset, default is IN-RESET (0x0), software must write 0x1 to bring up the core. |
||
[0:0] |
RSTN |
RW |
0x0 |
Reset, default is IN-RESET (0x0), software must write 0x1 to bring up the core. |
||
0x11 |
0x44 |
CNTRL |
ADC Interface Control & Status |
|||
[16:16] |
SDR_DDR_N |
RW |
0x0 |
Interface type (1 represents SDR, 0 represents DDR) |
||
[15:15] |
SYMB_OP |
RW |
0x0 |
Select symbol data format mode (0x1) |
||
[14:14] |
SYMB_8_16B |
RW |
0x0 |
Select number of bits for symbol format mode (1 represents 8b, 0 represents 16b) |
||
[12:8] |
NUM_LANES |
RW |
0x00 |
Number of active lanes (1 : CSSI 1-lane, LSSI 1-lane, 2 : LSSI 2-lane, 4 : CSSI 4-lane). For AD7768, AD7768-4 and AD777x number of active lanes : 1/2/4/8 where supported. |
||
[3:3] |
SYNC |
RW |
0x0 |
Initialize synchronization between multiple ADCs |
||
[2:2] |
R1_MODE |
RW |
0x0 |
Select number of RF channels 1 (0x1) or 2 (0x0). |
||
[1:1] |
DDR_EDGESEL |
RW |
0x0 |
Select rising edge (0x0) or falling edge (0x1) for the first part of a sample (if applicable) followed by the successive edges for the remaining parts. This only controls how the sample is delineated from the incoming data post DDR registers. |
||
[0:0] |
PIN_MODE |
RW |
0x0 |
Select interface pin mode to be clock multiplexed (0x1) or pin multiplexed (0x0). In clock multiplexed mode, samples are received on alternative clock edges. In pin multiplexed mode, samples are interleaved or grouped on the pins at the same clock edge. |
||
0x12 |
0x48 |
CNTRL_2 |
ADC Interface Control & Status |
|||
[1:1] |
EXT_SYNC_ARM |
RW |
0x0 |
Setting this bit will arm the trigger mechanism sensitive to an external sync signal. Once the external sync signal goes high it synchronizes channels within a ADC, and across multiple instances. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
[2:2] |
EXT_SYNC_DISARM |
RW |
0x0 |
Setting this bit will disarm the trigger mechanism sensitive to an external sync signal. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
[8:8] |
MANUAL_SYNC_REQUEST |
RW |
0x0 |
Setting this bit will issue an external sync event if it is hooked up inside the fabric. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
0x13 |
0x4c |
CNTRL_3 |
ADC Interface Control & Status |
|||
[8:8] |
CRC_EN |
RW |
0x0 |
Setting this bit will enable the CRC generation. |
||
[7:0] |
CUSTOM_CONTROL |
RW |
0x00 |
Select output format decode mode.(for ADAQ8092: bit 0 - enables digital output randomizer decode , bit 1 - enables alternate bit polarity decode). |
||
0x15 |
0x54 |
CLK_FREQ |
ADC Interface Control & Status |
|||
[31:0] |
CLK_FREQ |
RO |
0x00000000 |
Interface clock frequency. This is relative to the processor clock and in many cases is 100MHz. The number is represented as unsigned 16.16 format. Assuming a 100MHz processor clock the minimum is 1.523kHz and maximum is 6.554THz. The actual interface clock is CLK_FREQ * CLK_RATIO (see below). Note that the actual sampling clock may not be the same as the interface clock- software must consider device specific implementation parameters to calculate the final sampling clock. |
||
0x16 |
0x58 |
CLK_RATIO |
ADC Interface Control & Status |
|||
[31:0] |
CLK_RATIO |
RO |
0x00000000 |
Interface clock ratio - as a factor actual received clock. This is implementation specific and depends on any serial to parallel conversion and interface type (ddr/sdr/qdr). |
||
0x17 |
0x5c |
STATUS |
ADC Interface Control & Status |
|||
[4:4] |
ADC_CTRL_STATUS |
RO |
0x0 |
If set, indicates that the device’s register data is available on the data bus. |
||
[3:3] |
PN_ERR |
RO |
0x0 |
If set, indicates pn error in one or more channels. |
||
[2:2] |
PN_OOS |
RO |
0x0 |
If set, indicates pn oos in one or more channels. |
||
[1:1] |
OVER_RANGE |
RO |
0x0 |
If set, indicates over range in one or more channels. |
||
[0:0] |
STATUS |
RO |
0x0 |
Interface status, if set indicates no errors. If not set, there are errors, software may try resetting the cores. |
||
0x18 |
0x60 |
DELAY_CNTRL |
ADC Interface Control & Status( |
|||
[17:17] |
DELAY_SEL |
RW |
0x0 |
Delay select, a 0x0 to 0x1 transition in this register initiates a delay access controlled by the registers below. |
||
[16:16] |
DELAY_RWN |
RW |
0x0 |
Delay read (0x1) or write (0x0), the delay is accessed directly (no increment or decrement) with an address corresponding to each pin, and data corresponding to the total delay. |
||
[15:8] |
DELAY_ADDRESS |
RW |
0x00 |
Delay address, the range depends on the interface pins, data pins are usually at the lower range. |
||
[4:0] |
DELAY_WDATA |
RW |
0x00 |
Delay write data, a value of 1 corresponds to (1/200)ns for most devices. |
||
0x19 |
0x64 |
DELAY_STATUS |
ADC Interface Control & Status( |
|||
[9:9] |
DELAY_LOCKED |
RO |
0x0 |
Indicates delay locked (0x1) state. If this bit is read 0x0, delay control has failed to calibrate the elements. |
||
[8:8] |
DELAY_STATUS |
RO |
0x0 |
If set, indicates busy status (access pending). The read data may not be valid if this bit is set. |
||
[4:0] |
DELAY_RDATA |
RO |
0x00 |
Delay read data, current delay value in the elements |
||
0x1a |
0x68 |
SYNC_STATUS |
ADC Synchronization Status register |
|||
[0:0] |
ADC_SYNC |
RO |
0x0 |
ADC synchronization status. Will be set to 1 after the synchronization has been completed or while waiting for the synchronization signal in JESD204 systems. |
||
0x1c |
0x70 |
DRP_CNTRL |
ADC Interface Control & Status |
|||
[28:28] |
DRP_RWN |
RW |
0x0 |
DRP read (0x1) or write (0x0) select (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[27:16] |
DRP_ADDRESS |
RW |
0x000 |
DRP address, designs that contain more than one DRP accessible primitives have selects based on the most significant bits (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[15:0] |
RESERVED |
RO |
0x0000 |
Reserved for backward compatibility. |
||
0x1d |
0x74 |
DRP_STATUS |
ADC Interface Control & Status |
|||
[17:17] |
DRP_LOCKED |
RO |
0x0 |
If set indicates that the DRP has been locked. |
||
[16:16] |
DRP_STATUS |
RO |
0x0 |
If set indicates busy (access pending). The read data may not be valid if this bit is set (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[15:0] |
RESERVED |
RO |
0x0000 |
Reserved for backward compatibility. |
||
0x1e |
0x78 |
DRP_WDATA |
ADC DRP Write Data |
|||
[15:0] |
DRP_WDATA |
RW |
0x0000 |
DRP write data (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
0x1f |
0x7c |
DRP_RDATA |
ADC DRP Read Data |
|||
[15:0] |
DRP_RDATA |
RO |
0x0000 |
DRP read data (does not include GTX lanes). |
||
0x20 |
0x80 |
ADC_CONFIG_WR |
ADC Write Configuration Data |
|||
[31:0] |
ADC_CONFIG_WR |
RW |
0x00000000 |
Custom Write to the available registers. |
||
0x21 |
0x84 |
ADC_CONFIG_RD |
ADC Read Configuration Data |
|||
[31:0] |
ADC_CONFIG_RD |
RO |
0x00000000 |
Custom read of the available registers. |
||
0x22 |
0x88 |
UI_STATUS |
User Interface Status |
|||
[2:2] |
UI_OVF |
RW1C |
0x0 |
User Interface overflow. If set, indicates an overflow occurred during data transfer at the user interface (FIFO interface). Software must write a 0x1 to clear this register bit. |
||
[1:1] |
UI_UNF |
RW1C |
0x0 |
User Interface underflow. If set, indicates an underflow occurred during data transfer at the user interface (FIFO interface). Software must write a 0x1 to clear this register bit. |
||
[0:0] |
UI_RESERVED |
RW1C |
0x0 |
Reserved for backward compatibility. |
||
0x23 |
0x8c |
ADC_CONFIG_CTRL |
ADC RD/WR configuration |
|||
[31:0] |
ADC_CONFIG_CTRL |
RW |
0x00000000 |
Control RD/WR requests to the device’s register map: bit 1 - RD (‘b1) , WR (‘b0), bit 0 - enable WR/RD operation. |
||
0x28 |
0xa0 |
USR_CNTRL_1 |
ADC Interface Control & Status |
|||
[7:0] |
USR_CHANMAX |
RW |
0x00 |
This indicates the maximum number of inputs for the channel data multiplexers. User may add different processing modules post data capture as another input to this common multiplexer. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x29 |
0xa4 |
ADC_START_CODE |
ADC Synchronization start word |
|||
[31:0] |
ADC_START_CODE |
RW |
0x00000000 |
This sets the startcode that is used by the ADCs for synchronization NOT-APPLICABLE if START_CODE_DISABLE is set (0x1). |
||
0x2e |
0xb8 |
ADC_GPIO_IN |
ADC GPIO inputs |
|||
[31:0] |
ADC_GPIO_IN |
RO |
0x00000000 |
This reads auxiliary GPI pins of the ADC core |
||
0x2f |
0xbc |
ADC_GPIO_OUT |
ADC GPIO outputs |
|||
[31:0] |
ADC_GPIO_OUT |
RW |
0x00000000 |
This controls auxiliary GPO pins of the ADC core NOT-APPLICABLE if GPIO_DISABLE is set (0x1). |
||
0x30 |
0xc0 |
PPS_COUNTER |
PPS Counter register |
|||
[31:0] |
PPS_COUNTER |
RO |
0x00000000 |
Counts the core clock cycles (can be a device clock or interface clock) between two 1PPS pulse. |
||
0x31 |
0xc4 |
PPS_STATUS |
PPS Status register |
|||
[0:0] |
PPS_STATUS |
RO |
0x0 |
If this bit is asserted there is no incomming 1PPS signal. Maybe the source is out of sync or it’s not active. |
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x100 + 0x16*n |
0x400 + 0x58*n |
CHAN_CNTRLn |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[11:11] |
ADC_LB_OWR |
RW |
0x0 |
If set, forces ADC_DATA_SEL to 1, enabling data loopback |
||
[10:10] |
ADC_PN_SEL_OWR |
RW |
0x0 |
If set, forces ADC_PN_SEL to 0x9, device specific pn (e.g. ad9361) If both ADC_PN_TYPE_OWR and ADC_PN_SEL_OWR are set, they are ignored |
||
[9:9] |
IQCOR_ENB |
RW |
0x0 |
if set, enables IQ correction or scale correction. NOT-APPLICABLE if IQCORRECTION_DISABLE is set (0x1). |
||
[8:8] |
DCFILT_ENB |
RW |
0x0 |
if set, enables DC filter (to disable DC offset, set offset value to 0x0). NOT-APPLICABLE if DCFILTER_DISABLE is set (0x1). |
||
[6:6] |
FORMAT_SIGNEXT |
RW |
0x0 |
if set, enables sign extension (applicable only in 2’s complement mode). The data is always sign extended to the nearest byte boundary. NOT-APPLICABLE if DATAFORMAT_DISABLE is set (0x1). |
||
[5:5] |
FORMAT_TYPE |
RW |
0x0 |
Select offset binary (0x1) or 2’s complement (0x0) data type. This sets the incoming data type and is required by the post processing modules for any data conversion. NOT-APPLICABLE if DATAFORMAT_DISABLE is set (0x1). |
||
[4:4] |
FORMAT_ENABLE |
RW |
0x0 |
Enable data format conversion (see register bits above). NOT-APPLICABLE if DATAFORMAT_DISABLE is set (0x1). |
||
[3:3] |
RESERVED |
RO |
0x0 |
Reserved for backward compatibility. |
||
[2:2] |
RESERVED |
RO |
0x0 |
Reserved for backward compatibility. |
||
[1:1] |
ADC_PN_TYPE_OWR |
RW |
0x0 |
If set, forces ADC_PN_SEL to 0x1, modified pn23 If both ADC_PN_TYPE_OWR and ADC_PN_SEL_OWR are set, they are ignored |
||
[0:0] |
ENABLE |
RW |
0x0 |
If set, enables channel. A 0x0 to 0x1 transition transfers all the control signals to the respective channel processing module. If a channel is part of a complex signal (I/Q), even channel is the master and the odd channel is the slave. Though a single control is used, both must be individually selected. |
||
0x101 + 0x16*n |
0x404 + 0x58*n |
CHAN_STATUSn |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[12:12] |
CRC_ERR |
RW1C |
0x0 |
CRC errors. If set, indicates CRC error. Software must first clear this bit before initiating a transfer and monitor afterwards. |
||
[11:4] |
STATUS_HEADER |
RO |
0x00 |
The status header sent by the ADC.(compatible with AD7768/AD7768-4/AD777x). |
||
[2:2] |
PN_ERR |
RW1C |
0x0 |
PN errors. If set, indicates spurious mismatches in sync state. This bit is cleared if OOS is set and is only indicates errors when OOS is cleared. |
||
[1:1] |
PN_OOS |
RW1C |
0x0 |
PN Out Of Sync. If set, indicates an OOS status. OOS is set, if 64 consecutive patterns mismatch from the expected pattern. It is cleared, when 16 consecutive patterns match the expected pattern. |
||
[0:0] |
OVER_RANGE |
RW1C |
0x0 |
If set, indicates over range. Note that over range is independent of the data path, it indicates an over range over a data transfer period. Software must first clear this bit before initiating a transfer and monitor afterwards. |
||
0x102 + 0x16*n |
0x408 + 0x58*n |
CHAN_RAW_DATAn |
ADC Raw Data Reading Where n is from 0 to 15. |
|||
[31:0] |
ADC_READ_DATA |
RO |
0x00000000 |
Raw data read from the ADC. |
||
0x104 + 0x16*n |
0x410 + 0x58*n |
CHAN_CNTRLn_1 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[31:16] |
DCFILT_OFFSET |
RW |
0x0000 |
DC removal (if equipped) offset. This is a 2’s complement number added to the incoming data to remove a known DC offset. NOT-APPLICABLE if DCFILTER_DISABLE is set (0x1). |
||
[15:0] |
DCFILT_COEFF |
RW |
0x0000 |
DC removal filter (if equipped) coefficient. The format is 1.1.14 (sign, integer and fractional bits). NOT-APPLICABLE if DCFILTER_DISABLE is set (0x1). |
||
0x105 + 0x16*n |
0x414 + 0x58*n |
CHAN_CNTRLn_2 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[31:16] |
IQCOR_COEFF_1 |
RW |
0x0000 |
IQ correction (if equipped) coefficient. If scale & offset is implemented, this is the scale value and the format is 1.1.14 (sign, integer and fractional bits). If matrix multiplication is used, this is the channel I coefficient and the format is 1.1.14 (sign, integer and fractional bits). If SCALECORRECTION_ONLY is set, this implements the scale value correction for the current channel with the format 1.1.14 (sign, integer and fractional bits). NOT-APPLICABLE if IQCORRECTION_DISABLE is set (0x1). |
||
[15:0] |
IQCOR_COEFF_2 |
RW |
0x0000 |
IQ correction (if equipped) coefficient. If scale & offset is implemented, this is the offset value and the format is 2’s complement. If matrix multiplication is used, this is the channel Q coefficient and the format is 1.1.14 (sign, integer and fractional bits). NOT-APPLICABLE if IQCORRECTION_DISABLE is set (0x1). |
||
0x106 + 0x16*n |
0x418 + 0x58*n |
CHAN_CNTRLn_3 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[19:16] |
ADC_PN_SEL |
RW |
0x0 |
Selects the PN monitor sequence type (available only if ADC supports it).
|
||
[3:0] |
ADC_DATA_SEL |
RW |
0x0 |
Selects the data source to DMA. 0x0: input data (ADC) 0x1: loopback data (DAC) |
||
0x108 + 0x16*n |
0x420 + 0x58*n |
CHAN_USR_CNTRLn_1 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[25:25] |
USR_DATATYPE_BE |
RO |
0x0 |
The user data type format- if set, indicates big endian (default is little endian). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[24:24] |
USR_DATATYPE_SIGNED |
RO |
0x0 |
The user data type format- if set, indicates signed (2’s complement) data (default is unsigned). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[23:16] |
USR_DATATYPE_SHIFT |
RO |
0x00 |
The user data type format- the amount of right shift for actual samples within the total number of bits. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[15:8] |
USR_DATATYPE_TOTAL_BITS |
RO |
0x00 |
The user data type format- number of total bits used for a sample. The total number of bits must be an integer multiple of 8 (byte aligned). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[7:0] |
USR_DATATYPE_BITS |
RO |
0x00 |
The user data type format- number of bits in a sample. This indicates the actual sample data bits. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x109 + 0x16*n |
0x424 + 0x58*n |
CHAN_USR_CNTRLn_2 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[31:16] |
USR_DECIMATION_M |
RW |
0x0000 |
This holds the user decimation M value of the channel that is currently being selected on the multiplexer above. The total decimation factor is of the form M/N. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[15:0] |
USR_DECIMATION_N |
RW |
0x0000 |
This holds the user decimation N value of the channel that is currently being selected on the multiplexer above. The total decimation factor is of the form M/N. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x10a + 0x16*n |
0x428 + 0x58*n |
CHAN_CNTRLn_4 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[31:3] |
RESERVED |
RO |
0x00000000 |
Reserved for backward compatibility. |
||
[2:0] |
SOFTSPAN |
RW |
0x7 |
Softspan configuration register. |
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x10 |
0x40 |
RSTN |
DAC Interface Control & Status |
|||
[2:2] |
CE_N |
RW |
0x0 |
Clock enable, default is enabled(0x0). An inverse version of the signal is exported out of the module to control clock enables |
||
[1:1] |
MMCM_RSTN |
RW |
0x0 |
MMCM reset only (required for DRP access). Reset, default is IN-RESET (0x0), software must write 0x1 to bring up the core. |
||
[0:0] |
RSTN |
RW |
0x0 |
Reset, default is IN-RESET (0x0), software must write 0x1 to bring up the core. |
||
0x11 |
0x44 |
CNTRL_1 |
DAC Interface Control & Status |
|||
[0:0] |
SYNC |
RW |
0x0 |
Setting this bit synchronizes channels within a DAC, and across multiple instances. This bit self clears. |
||
[1:1] |
EXT_SYNC_ARM |
RW |
0x0 |
Setting this bit will arm the trigger mechanism sensitive to an external sync signal. Once the external sync signal goes high it synchronizes channels within a DAC, and across multiple instances. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
[2:2] |
EXT_SYNC_DISARM |
RW |
0x0 |
Setting this bit will disarm the trigger mechanism sensitive to an external sync signal. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
[8:8] |
MANUAL_SYNC_REQUEST |
RW |
0x0 |
Setting this bit will issue an external sync event if it is hooked up inside the fabric. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
0x12 |
0x48 |
CNTRL_2 |
DAC Interface Control & Status |
|||
[16:16] |
SDR_DDR_N |
RW |
0x0 |
Interface type (1 represents SDR, 0 represents DDR) |
||
[15:15] |
SYMB_OP |
RW |
0x0 |
Select data symbol format mode (0x1) |
||
[14:14] |
SYMB_8_16B |
RW |
0x0 |
Select number of bits for symbol format mode (1 represents 8b, 0 represents 16b) |
||
[12:8] |
NUM_LANES |
RW |
0x00 |
Number of active lanes (1 : CSSI 1-lane, LSSI 1-lane, 2 : LSSI 2-lane, 4 : CSSI 4-lane) |
||
[7:7] |
PAR_TYPE |
RW |
0x0 |
Select parity even (0x0) or odd (0x1). |
||
[6:6] |
PAR_ENB |
RW |
0x0 |
Select parity (0x1) or frame (0x0) mode. |
||
[5:5] |
R1_MODE |
RW |
0x0 |
Select number of RF channels 1 (0x1) or 2 (0x0). |
||
[4:4] |
DATA_FORMAT |
RW |
0x0 |
Select data format 2’s complement (0x0) or offset binary (0x1). NOT-APPLICABLE if DAC_DP_DISABLE is set (0x1). |
||
[3:0] |
RESERVED |
NA |
0x0 |
Reserved |
||
0x13 |
0x4c |
RATECNTRL |
DAC Interface Control & Status |
|||
[7:0] |
RATE |
RW |
0x00 |
The effective dac rate (the maximum possible rate is dependent on the interface clock). The samples are generated at 1/RATE of the interface clock. |
||
0x14 |
0x50 |
FRAME |
DAC Interface Control & Status |
|||
[0:0] |
FRAME |
RW |
0x0 |
The use of frame is device specific. Usually setting this bit to 1 generates a FRAME (1 DCI clock period) pulse on the interface. This bit self clears. |
||
0x15 |
0x54 |
STATUS1 |
DAC Interface Control & Status |
|||
[31:0] |
CLK_FREQ |
RO |
0x00000000 |
Interface clock frequency. This is relative to the processor clock and in many cases is 100MHz. The number is represented as unsigned 16.16 format. Assuming a 100MHz processor clock the minimum is 1.523kHz and maximum is 6.554THz. The actual interface clock is CLK_FREQ * CLK_RATIO (see below). Note that the actual sampling clock may not be the same as the interface clock- software must consider device specific implementation parameters to calculate the final sampling clock. |
||
0x16 |
0x58 |
STATUS2 |
DAC Interface Control & Status |
|||
[31:0] |
CLK_RATIO |
RO |
0x00000000 |
Interface clock ratio - as a factor actual received clock. This is implementation specific and depends on any serial to parallel conversion and interface type (ddr/sdr/qdr). |
||
0x17 |
0x5c |
STATUS3 |
DAC Interface Control & Status |
|||
[0:0] |
STATUS |
RO |
0x0 |
Interface status, if set indicates no errors. If not set, there are errors, software may try resetting the cores. |
||
0x18 |
0x60 |
DAC_CLKSEL |
DAC Interface Control & Status |
|||
[0:0] |
DAC_CLKSEL |
RW |
0x0 |
Allows changing of the clock polarity. Note: its default value is CLK_EDGE_SEL |
||
0x1a |
0x68 |
SYNC_STATUS |
DAC Synchronization Status register |
|||
[0:0] |
DAC_SYNC_STATUS |
RO |
0x0 |
DAC synchronization status. Will be set to 1 while waiting for the external synchronization signal This bit has an effect only the EXT_SYNC synthesis parameter is set. |
||
0x1c |
0x70 |
DRP_CNTRL |
DRP Control & Status |
|||
[28:28] |
DRP_RWN |
RW |
0x0 |
DRP read (0x1) or write (0x0) select (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[27:16] |
DRP_ADDRESS |
RW |
0x000 |
DRP address, designs that contain more than one DRP accessible primitives have selects based on the most significant bits (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[15:0] |
RESERVED |
RO |
0x0000 |
Reserved for backwards compatibility |
||
0x1d |
0x74 |
DRP_STATUS |
DAC Interface Control & Status |
|||
[17:17] |
DRP_LOCKED |
RO |
0x0 |
If set indicates the MMCM/PLL is locked |
||
[16:16] |
DRP_STATUS |
RO |
0x0 |
If set indicates busy (access pending). The read data may not be valid if this bit is set (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[15:0] |
RESERVED |
RO |
0x0000 |
Reserved for backwards compatibility |
||
0x1e |
0x78 |
DRP_WDATA |
DAC Interface Control & Status |
|||
[15:0] |
DRP_WDATA |
RW |
0x0000 |
DRP write data (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
0x1f |
0x7c |
DRP_RDATA |
DAC Interface Control & Status |
|||
[15:0] |
DRP_RDATA |
RO |
0x0000 |
DRP read data (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
0x20 |
0x80 |
DAC_CUSTOM_RD |
DAC Read Configuration Data |
|||
[31:0] |
DAC_CUSTOM_RD |
RO |
0x00000000 |
Custom Read of the available registers. |
||
0x21 |
0x84 |
DAC_CUSTOM_WR |
DAC Write Configuration Data |
|||
[31:0] |
DAC_CUSTOM_WR |
RW |
0x00000000 |
Custom Write of the available registers. |
||
0x22 |
0x88 |
UI_STATUS |
User Interface Status |
|||
[4:4] |
IF_BUSY |
RO |
0x0 |
Interface busy. If set, indicates that the data interface is busy. |
||
[1:1] |
UI_OVF |
RW1C |
0x0 |
User Interface overflow. If set, indicates an overflow occurred during data transfer at the user interface (FIFO interface). Software must write a 0x1 to clear this register bit. |
||
[0:0] |
UI_UNF |
RW1C |
0x0 |
User Interface underflow. If set, indicates an underflow occurred during data transfer at the user interface (FIFO interface). Software must write a 0x1 to clear this register bit. |
||
0x23 |
0x8c |
DAC_CUSTOM_CTRL |
DAC Control Configuration Data |
|||
[31:0] |
DAC_CUSTOM_CTRL |
RW |
0x00000000 |
Custom Control of the available registers. |
||
0x28 |
0xa0 |
USR_CNTRL_1 |
DAC User Control & Status |
|||
[7:0] |
USR_CHANMAX |
RW |
0x00 |
This indicates the maximum number of inputs for the channel data multiplexers. User may add different processing modules as inputs to the dac. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x2e |
0xb8 |
DAC_GPIO_IN |
DAC GPIO inputs |
|||
[31:0] |
DAC_GPIO_IN |
RO |
0x00000000 |
This reads auxiliary GPI pins of the DAC core |
||
0x2f |
0xbc |
DAC_GPIO_OUT |
DAC GPIO outputs |
|||
[31:0] |
DAC_GPIO_OUT |
RW |
0x00000000 |
This controls auxiliary GPO pins of the DAC core NOT-APPLICABLE if GPIO_DISABLE is set (0x1). |
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x100 + 0x16*n |
0x400 + 0x58*n |
CHAN_CNTRLn_1 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[21:16] |
DDS_PHASE_DW |
RO |
0x00 |
The DDS phase data width offers the HDL parameter configuration with the same name. This information is used in conjunction with CHAN_CNTRL_9 and CHAN_CNTRL_10. More info at AD Direct Digital Synthesis. |
||
[15:0] |
DDS_SCALE_1 |
RW |
0x0000 |
The DDS scale for tone 1. Sets the amplitude of the tone. The format is 1.1.14 fixed point (signed, integer, fractional). The DDS in general runs on 16-bits, note that if you do use both channels and set both scale to 0x4000, it is over-range. The final output is (tone_1_fullscale * scale_1) + (tone_2_fullscale * scale_2). NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
0x101 + 0x16*n |
0x404 + 0x58*n |
CHAN_CNTRLn_2 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
DDS_INIT_1 |
RW |
0x0000 |
The DDS phase initialization for tone 1. Sets the initial phase offset of the tone. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
[15:0] |
DDS_INCR_1 |
RW |
0x0000 |
Sets the frequency of the phase accumulator. Its value can be calculated by \(INCR = (f_{out} * 2^{16}) * clkratio / f_{if}\); where f_out is the generated output frequency, and f_if is the frequency of the digital interface, and clock_ratio is the ratio between the sampling clock and the interface clock. If DDS_PHASE_DW is greater than 16(from CHAN_CNTRL_1), the phase increment for tone 1 is extended in CHAN_CNTRL_9. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
0x102 + 0x16*n |
0x408 + 0x58*n |
CHAN_CNTRLn_3 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[15:0] |
DDS_SCALE_2 |
RW |
0x0000 |
The DDS scale for tone 2. Sets the amplitude of the tone. The format is 1.1.14 fixed point (signed, integer, fractional). The DDS in general runs on 16-bits, note that if you do use both channels and set both scale to 0x4000, it is over-range. The final output is (tone_1_fullscale * scale_1) + (tone_2_fullscale * scale_2). NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
0x103 + 0x16*n |
0x40c + 0x58*n |
CHAN_CNTRLn_4 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
DDS_INIT_2 |
RW |
0x0000 |
The DDS phase initialization for tone 2. Sets the initial phase offset of the tone. If DDS_PHASE_DW is greater than 16(from CHAN_CNTRL_1), the phase init for tone 2 is extended in CHAN_CNTRL_10. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
[15:0] |
DDS_INCR_2 |
RW |
0x0000 |
Sets the frequency of the phase accumulator. Its value can be calculated by \(INCR = (f_{out} * 2^{16}) * clkratio / f_{if}\); where f_out is the generated output frequency, and f_if is the frequency of the digital interface, and clock_ratio is the ratio between the sampling clock and the interface clock. If DDS_PHASE_DW is greater than 16(from CHAN_CNTRL_1), the phase increment for tone 2 is extended in CHAN_CNTRL_10. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
0x104 + 0x16*n |
0x410 + 0x58*n |
CHAN_CNTRLn_5 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
DDS_PATT_2 |
RW |
0x0000 |
The DDS data pattern for this channel. |
||
[15:0] |
DDS_PATT_1 |
RW |
0x0000 |
The DDS data pattern for this channel. |
||
0x105 + 0x16*n |
0x414 + 0x58*n |
CHAN_CNTRLn_6 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[2:2] |
IQCOR_ENB |
RW |
0x0 |
if set, enables IQ correction. NOT-APPLICABLE if DAC_DP_DISABLE is set (0x1). |
||
[1:1] |
DAC_LB_OWR |
RW |
0x0 |
If set, forces DAC_DDS_SEL to 0x8, loopback If DAC_LB_OWR and DAC_PN_OWR are both set, they are ignored |
||
[0:0] |
DAC_PN_OWR |
RW |
0x0 |
IF set, forces DAC_DDS_SEL to 0x09, device specific pnX If DAC_LB_OWR and DAC_PN_OWR are both set, they are ignored |
||
0x106 + 0x16*n |
0x418 + 0x58*n |
CHAN_CNTRLn_7 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[3:0] |
DAC_DDS_SEL |
RW |
0x0 |
Select internal data sources (available only if the DAC supports it).
|
||
0x107 + 0x16*n |
0x41c + 0x58*n |
CHAN_CNTRLn_8 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
IQCOR_COEFF_1 |
RW |
0x0000 |
IQ correction (if equipped) coefficient. If scale & offset is implemented, this is the scale value and the format is 1.1.14 (sign, integer and fractional bits). If matrix multiplication is used, this is the channel I coefficient and the format is 1.1.14 (sign, integer and fractional bits). NOT-APPLICABLE if IQCORRECTION_DISABLE is set (0x1). |
||
[15:0] |
IQCOR_COEFF_2 |
RW |
0x0000 |
IQ correction (if equipped) coefficient. If scale & offset is implemented, this is the offset value and the format is 2’s complement. If matrix multiplication is used, this is the channel Q coefficient and the format is 1.1.14 (sign, integer and fractional bits). NOT-APPLICABLE if IQCORRECTION_DISABLE is set (0x1). |
||
0x108 + 0x16*n |
0x420 + 0x58*n |
USR_CNTRLn_3 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[25:25] |
USR_DATATYPE_BE |
RW |
0x0 |
The user data type format- if set, indicates big endian (default is little endian). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[24:24] |
USR_DATATYPE_SIGNED |
RW |
0x0 |
The user data type format- if set, indicates signed (2’s complement) data (default is unsigned). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[23:16] |
USR_DATATYPE_SHIFT |
RW |
0x00 |
The user data type format- the amount of right shift for actual samples within the total number of bits. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[15:8] |
USR_DATATYPE_TOTAL_BITS |
RW |
0x00 |
The user data type format- number of total bits used for a sample. The total number of bits must be an integer multiple of 8 (byte aligned). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[7:0] |
USR_DATATYPE_BITS |
RW |
0x00 |
The user data type format- number of bits in a sample. This indicates the actual sample data bits. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x109 + 0x16*n |
0x424 + 0x58*n |
USR_CNTRLn_4 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
USR_INTERPOLATION_M |
RW |
0x0000 |
This holds the user interpolation M value of the channel that is currently being selected on the multiplexer above. The total interpolation factor is of the form M/N. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[15:0] |
USR_INTERPOLATION_N |
RW |
0x0000 |
This holds the user interpolation N value of the channel that is currently being selected on the multiplexer above. The total interpolation factor is of the form M/N. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x10a + 0x16*n |
0x428 + 0x58*n |
USR_CNTRLn_5 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[0:0] |
DAC_IQ_MODE |
RW |
0x0 |
Enable complex mode. In this mode the driven data to the DAC must be a sequence of I and Q sample pairs. |
||
[1:1] |
DAC_IQ_SWAP |
RW |
0x0 |
Allows IQ swapping in complex mode. Only takes effect if complex mode is enabled. |
||
0x10b + 0x16*n |
0x42c + 0x58*n |
CHAN_CNTRLn_9 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
DDS_INIT_1_EXTENDED |
RW |
0x0000 |
The extended DDS phase initialization for tone 1. Sets the initial phase offset of the tone. The extended init(phase) value should be calculated according to DDS_PHASE_DW value from CHAN_CNTRL_1 NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
[15:0] |
DDS_INCR_1_EXTENDED |
RW |
0x0000 |
Sets the frequency of tone 1’s phase accumulator. Its value can be calculated by \(INCR = (f_{out} * 2^{phaseDW}) * clkratio / f_{if}\); Where f_out is the generated output frequency, DDS_PHASE_DW value can be found in CHAN_CNTRL_1 in case DDS_PHASE_DW is not 16, f_if is the frequency of the digital interface, and clock_ratio is the ratio between the sampling clock and the interface clock. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
0x10c + 0x16*n |
0x430 + 0x58*n |
CHAN_CNTRLn_10 |
DAC Channel Control & Status (channel - 0) Where n is from 0 to 15. |
|||
[31:16] |
DDS_INIT_2_EXTENDED |
RW |
0x0000 |
The extended DDS phase initialization for tone 2. Sets the initial phase offset of the tone. The extended init(phase) value should be calculated according to DDS_PHASE_DW value from CHAN_CNTRL_2 NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
||
[15:0] |
DDS_INCR_2_EXTENDED |
RW |
0x0000 |
Sets the frequency of tone 2’s phase accumulator. Its value can be calculated by \(INCR = (f_{out} * 2^{phaseDW}) * clkratio / f_{if}\); Where f_out is the generated output frequency, DDS_PHASE_DW value can be found in CHAN_CNTRL_2 in case DDS_PHASE_DW is not 16, f_if is the frequency of the digital interface, and clock_ratio is the ratio between the sampling clock and the interface clock. NOT-APPLICABLE if DDS_DISABLE is set (0x1). |
Design Guidelines#
To reduce the power and resource utilization, all the unused features should be disabled.
Software Guidelines#
For RX PRBS data, when 2’s complement mode is selected, each new word is the 1-bit shifted version of the previous word. Steps to do in order to test the PRBS on the RX path:
Write to AD9963 SPI register 0x51 the value 1, which enables the BIST core.
Write to AD9963 SPI register 0x51 the value 7.
Read register 0x404 from the AD9361 ADC core (should read value 2 or 6).
Write back to register 0x404 from the AD9361 ADC core the value read above.
Read register 0x404 from the AD9361 ADC core. It should read 0x0 if the RX path is working correctly for channel 1.
Perform steps 3-6 with register 0x444. This will validate the RX path for channel 2.
If the TRX path does not work correctly, the output current on the TRX pins can be changed by writing to register 0x63.
The TX interface testing is done by writing 1024 samples of PRBS data and checking the BIST signature values for both the I and the Q side. Interpolation should not be active during the BIST testing.
Software Support#
The software for this part can be found as part of the ADALM2000 (or shortly, M2K) reference design.
Linux device driver at drivers/iio/adc/ad9963.c
References#
HDL IP core at library/axi_ad9963
HDL project at projects/m2k
HDL project documentation at m2k