ADC JESD204B/C Transport Peripheral
The ADC JESD204B/C Transport Peripheral implements the transport level handling of a JESD204B/C transmitter device. It is compatible with a wide range of Analog Devices high-speed analog-to-digital converters.
The core handles the JESD204B/C deframing of the payload data.
The peripheral can be configured at runtime through a AXI4-Lite memory mapped register map.
Features
ADI high-speed ADC compatible JESD204B/C data deframing;
Test-pattern checker;
Per-channel data formatting (sign extension, two’s complement to offset binary);
Runtime reconfigurability through memory-mapped register interface (AXI4-Lite).
Files
Block Diagram
Synthesis Configuration Parameters
Name |
Description |
Default Value |
Choices/Range |
---|---|---|---|
ID |
Instance identification number. |
0 |
|
FPGA_TECHNOLOGY |
Fpga Technology. |
0 |
Unknown (0), 7series (1), ultrascale (2), ultrascale+ (3), versal (4) |
FPGA_FAMILY |
Fpga Family. |
0 |
Unknown (0), artix (1), kintex (2), virtex (3), zynq (4), versalprime (5), versalaicore (6), versalpremium (7) |
SPEED_GRADE |
Speed Grade. |
0 |
Unknown (0), -1 (10), -1L (11), -1H (12), -1HV (13), -1LV (14), -2 (20), -2L (21), -2LV (22), -2MP (23), -2LVC (24), -2LVI (25), -3 (30) |
DEV_PACKAGE |
Dev Package. |
0 |
Unknown (0), rf (1), fl (2), ff (3), fb (4), hc (5), fh (6), cs (7), cp (8), ft (9), fg (10), sb (11), rb (12), rs (13), cl (14), sf (15), ba (16), fa (17), fs (18), fi (19), vs (20), ls (21) |
NUM_LANES |
Number of lanes supported by the peripheral. Equivalent to JESD204 |
1 |
1, 2, 3, 4, 6, 8, 12, 16, 24, 32 |
NUM_CHANNELS |
Number of converters supported by the peripheral. Equivalent to JESD204 |
4 |
1, 2, 4, 6, 8, 16, 32, 64 |
SAMPLES_PER_FRAME |
Number of samples per frame. Equivalent to JESD204 |
1 |
1, 2, 3, 4, 6, 8, 12, 16 |
CONVERTER_RESOLUTION |
Resolution of the converter. Equivalent to JESD204 |
14 |
8, 11, 12, 14, 16 |
BITS_PER_SAMPLE |
Number of bits per sample. Equivalent to JESD204 |
16 |
8, 12, 16 |
DMA_BITS_PER_SAMPLE |
DMA Bits per Sample. |
16 |
|
OCTETS_PER_BEAT |
Number of bytes per beat for each link. |
4 |
4, 6, 8, 12, 16, 32, 64 |
EN_FRAME_ALIGN |
En Frame Align. |
1 |
|
TWOS_COMPLEMENT |
PRBS data format. |
1 |
|
EXT_SYNC |
Enable external sync. |
0 |
|
PN7_ENABLE |
Enable PN7 check. |
1 |
|
PN15_ENABLE |
Enable PN15 check. |
1 |
Signal and Interface Pins
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
s_axi_awaddr |
AWADDR |
in [12:0] |
|
s_axi_awprot |
AWPROT |
in [2:0] |
|
s_axi_awvalid |
AWVALID |
in |
|
s_axi_awready |
AWREADY |
out |
|
s_axi_wdata |
WDATA |
in [31:0] |
|
s_axi_wstrb |
WSTRB |
in [3:0] |
|
s_axi_wvalid |
WVALID |
in |
|
s_axi_wready |
WREADY |
out |
|
s_axi_bresp |
BRESP |
out [1:0] |
|
s_axi_bvalid |
BVALID |
out |
|
s_axi_bready |
BREADY |
in |
|
s_axi_araddr |
ARADDR |
in [12:0] |
|
s_axi_arprot |
ARPROT |
in [2:0] |
|
s_axi_arvalid |
ARVALID |
in |
|
s_axi_arready |
ARREADY |
out |
|
s_axi_rdata |
RDATA |
out [31:0] |
|
s_axi_rresp |
RRESP |
out [1:0] |
|
s_axi_rvalid |
RVALID |
out |
|
s_axi_rready |
RREADY |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
s_axi_aclk |
CLK |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
s_axi_aresetn |
RST |
in |
Physical Port |
Logical Port |
Direction |
Dependency |
---|---|---|---|
link_ready |
TREADY |
out |
|
link_valid |
TVALID |
in |
|
link_data |
TDATA |
in [31:0] |
Physical Port |
Direction |
Dependency |
Description |
---|---|---|---|
link_clk |
in |
Device clock for the JESD204B interface of the Link Layer Interface. Must be line clock/40 for correct 204B operation. Must be line clock/66 for correct 64b66b 204C operation. Bus |
|
link_sof |
in [3:0] |
||
enable |
out [3:0] |
Channel enable indicator of the Application layer Interface |
|
adc_valid |
out [3:0] |
Qualifier signal for each channel of the Application layer interface. Always ‘1’. |
|
adc_data |
out [31:0] |
Raw application layer data, every channel concatenated (Application layer interface). |
|
adc_dovf |
in |
Application layer overflow of the Application layer interface. |
|
adc_sync_in |
in |
EXT_SYNC == 1 |
|
adc_sync_manual_req_out |
out |
EXT_SYNC == 1 |
|
adc_sync_manual_req_in |
in |
EXT_SYNC == 1 |
|
adc_rst |
out |
The S_AXI interface is synchronous to the s_axi_aclk clock. All other signals and interfaces are synchronous to the device_clk clock.
Register Map
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x0 |
0x0 |
VERSION |
Version and Scratch Registers |
|||
[31:0] |
VERSION |
RO |
0x00000000 |
Version number. Unique to all cores. |
||
0x1 |
0x4 |
ID |
Version and Scratch Registers |
|||
[31:0] |
ID |
RO |
0x00000000 |
Instance identifier number. |
||
0x2 |
0x8 |
SCRATCH |
Version and Scratch Registers |
|||
[31:0] |
SCRATCH |
RW |
0x00000000 |
Scratch register. |
||
0x3 |
0xc |
CONFIG |
Version and Scratch Registers |
|||
[0] |
IQCORRECTION_DISABLE |
RO |
0x0 |
If set, indicates that the IQ Correction module was not implemented. (as a result of a configuration of the IP instance) |
||
[1] |
DCFILTER_DISABLE |
RO |
0x0 |
If set, indicates that the DC Filter module was not implemented. (as a result of a configuration of the IP instance) |
||
[2] |
DATAFORMAT_DISABLE |
RO |
0x0 |
If set, indicates that the Data Format module was not implemented. (as a result of a configuration of the IP instance) |
||
[3] |
USERPORTS_DISABLE |
RO |
0x0 |
If set, indicates that the logic related to the User Data Format (e.g. decimation) was not implemented. (as a result of a configuration of the IP instance) |
||
[4] |
MODE_1R1T |
RO |
0x0 |
If set, indicates that the core was implemented in 1 channel mode. (e.g. refer to AD9361 data sheet) |
||
[5] |
DELAY_CONTROL_DISABLE |
RO |
0x0 |
If set, indicates that the delay control is disabled for this IP. (as a result of a configuration of the IP instance) |
||
[6] |
DDS_DISABLE |
RO |
0x0 |
If set, indicates that the DDS is disabled for this IP. (as a result of a configuration of the IP instance) |
||
[7] |
CMOS_OR_LVDS_N |
RO |
0x0 |
CMOS or LVDS mode is used for the interface. (as a result of a configuration of the IP instance) |
||
[8] |
PPS_RECEIVER_ENABLE |
RO |
0x0 |
If set, indicates the PPS receiver is enabled. (as a result of a configuration of the IP instance) |
||
[9] |
SCALECORRECTION_ONLY |
RO |
0x0 |
If set, indicates that the IQ Correction module implements only scale correction. IQ correction must be enabled. (as a result of a configuration of the IP instance) |
||
[12] |
EXT_SYNC |
RO |
0x0 |
If set the transport layer cores (ADC/DAC) have implemented the support for external synchronization signal. |
||
[13] |
RD_RAW_DATA |
RO |
0x0 |
If set, the ADC has the capability to read raw data in register CHAN_RAW_DATA from adc_channel. |
||
0x4 |
0x10 |
PPS_IRQ_MASK |
PPS Interrupt mask |
|||
[0] |
PPS_IRQ_MASK |
RW |
0x1 |
Mask bit for the 1PPS receiver interrupt |
||
0x7 |
0x1c |
FPGA_INFO |
FPGA device information library/scripts/adi_intel_device_info_enc.tcl (Intel encoded values) library/scripts/adi_xilinx_device_info_enc.tcl (Xilinx encoded values) |
|||
[31:24] |
FPGA_TECHNOLOGY |
RO |
0x00 |
Encoded value describing the technology/generation of the FPGA device (arria 10/7series) |
||
[23:16] |
FPGA_FAMILY |
RO |
0x00 |
Encoded value describing the family variant of the FPGA device(e.g., SX, GX, GT or zynq, kintex, virtex) |
||
[15:8] |
SPEED_GRADE |
RO |
0x00 |
Encoded value describing the FPGA’s speed-grade |
||
[7:0] |
DEV_PACKAGE |
RO |
0x00 |
Encoded value describing the device package. The package might affect high-speed interfaces |
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x10 |
0x40 |
RSTN |
ADC Interface Control & Status |
|||
[2] |
CE_N |
RW |
0x0 |
Clock enable, default is enabled(0x0). An inverse version of the signal is exported out of the module to control clock enables |
||
[1] |
MMCM_RSTN |
RW |
0x0 |
MMCM reset only (required for DRP access). Reset, default is IN-RESET (0x0), software must write 0x1 to bring up the core. |
||
[0] |
RSTN |
RW |
0x0 |
Reset, default is IN-RESET (0x0), software must write 0x1 to bring up the core. |
||
0x11 |
0x44 |
CNTRL |
ADC Interface Control & Status |
|||
[16] |
SDR_DDR_N |
RW |
0x0 |
Interface type (1 represents SDR, 0 represents DDR) |
||
[15] |
SYMB_OP |
RW |
0x0 |
Select symbol data format mode (0x1) |
||
[14] |
SYMB_8_16B |
RW |
0x0 |
Select number of bits for symbol format mode (1 represents 8b, 0 represents 16b) |
||
[12:8] |
NUM_LANES |
RW |
0x00 |
Number of active lanes (1 : CSSI 1-lane, LSSI 1-lane, 2 : LSSI 2-lane, 4 : CSSI 4-lane). For AD7768, AD7768-4 and AD777x number of active lanes : 1/2/4/8 where supported. |
||
[3] |
SYNC |
RW |
0x0 |
Initialize synchronization between multiple ADCs |
||
[2] |
R1_MODE |
RW |
0x0 |
Select number of RF channels 1 (0x1) or 2 (0x0). |
||
[1] |
DDR_EDGESEL |
RW |
0x0 |
Select rising edge (0x0) or falling edge (0x1) for the first part of a sample (if applicable) followed by the successive edges for the remaining parts. This only controls how the sample is delineated from the incoming data post DDR registers. |
||
[0] |
PIN_MODE |
RW |
0x0 |
Select interface pin mode to be clock multiplexed (0x1) or pin multiplexed (0x0). In clock multiplexed mode, samples are received on alternative clock edges. In pin multiplexed mode, samples are interleaved or grouped on the pins at the same clock edge. |
||
0x12 |
0x48 |
CNTRL_2 |
ADC Interface Control & Status |
|||
[1] |
EXT_SYNC_ARM |
RW |
0x0 |
Setting this bit will arm the trigger mechanism sensitive to an external sync signal. Once the external sync signal goes high it synchronizes channels within a ADC, and across multiple instances. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
[2] |
EXT_SYNC_DISARM |
RW |
0x0 |
Setting this bit will disarm the trigger mechanism sensitive to an external sync signal. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
[8] |
MANUAL_SYNC_REQUEST |
RW |
0x0 |
Setting this bit will issue an external sync event if it is hooked up inside the fabric. This bit has an effect only the EXT_SYNC synthesis parameter is set. This bit self clears. |
||
0x13 |
0x4c |
CNTRL_3 |
ADC Interface Control & Status |
|||
[8] |
CRC_EN |
RW |
0x0 |
Setting this bit will enable the CRC generation. |
||
[7:0] |
CUSTOM_CONTROL |
RW |
0x00 |
Select output format decode mode.(for ADAQ8092: bit 0 - enables digital output randomizer decode , bit 1 - enables alternate bit polarity decode). |
||
0x15 |
0x54 |
CLK_FREQ |
ADC Interface Control & Status |
|||
[31:0] |
CLK_FREQ |
RO |
0x00000000 |
Interface clock frequency. This is relative to the processor clock and in many cases is 100MHz. The number is represented as unsigned 16.16 format. Assuming a 100MHz processor clock the minimum is 1.523kHz and maximum is 6.554THz. The actual interface clock is CLK_FREQ * CLK_RATIO (see below). Note that the actual sampling clock may not be the same as the interface clock- software must consider device specific implementation parameters to calculate the final sampling clock. |
||
0x16 |
0x58 |
CLK_RATIO |
ADC Interface Control & Status |
|||
[31:0] |
CLK_RATIO |
RO |
0x00000000 |
Interface clock ratio - as a factor actual received clock. This is implementation specific and depends on any serial to parallel conversion and interface type (ddr/sdr/qdr). |
||
0x17 |
0x5c |
STATUS |
ADC Interface Control & Status |
|||
[4] |
ADC_CTRL_STATUS |
RO |
0x0 |
If set, indicates that the device’s register data is available on the data bus. |
||
[3] |
PN_ERR |
RO |
0x0 |
If set, indicates pn error in one or more channels. |
||
[2] |
PN_OOS |
RO |
0x0 |
If set, indicates pn oos in one or more channels. |
||
[1] |
OVER_RANGE |
RO |
0x0 |
If set, indicates over range in one or more channels. |
||
[0] |
STATUS |
RO |
0x0 |
Interface status, if set indicates no errors. If not set, there are errors, software may try resetting the cores. |
||
0x18 |
0x60 |
DELAY_CNTRL |
ADC Interface Control & Status( |
|||
[17] |
DELAY_SEL |
RW |
0x0 |
Delay select, a 0x0 to 0x1 transition in this register initiates a delay access controlled by the registers below. |
||
[16] |
DELAY_RWN |
RW |
0x0 |
Delay read (0x1) or write (0x0), the delay is accessed directly (no increment or decrement) with an address corresponding to each pin, and data corresponding to the total delay. |
||
[15:8] |
DELAY_ADDRESS |
RW |
0x00 |
Delay address, the range depends on the interface pins, data pins are usually at the lower range. |
||
[4:0] |
DELAY_WDATA |
RW |
0x00 |
Delay write data, a value of 1 corresponds to (1/200)ns for most devices. |
||
0x19 |
0x64 |
DELAY_STATUS |
ADC Interface Control & Status( |
|||
[9] |
DELAY_LOCKED |
RO |
0x0 |
Indicates delay locked (0x1) state. If this bit is read 0x0, delay control has failed to calibrate the elements. |
||
[8] |
DELAY_STATUS |
RO |
0x0 |
If set, indicates busy status (access pending). The read data may not be valid if this bit is set. |
||
[4:0] |
DELAY_RDATA |
RO |
0x00 |
Delay read data, current delay value in the elements |
||
0x1a |
0x68 |
SYNC_STATUS |
ADC Synchronization Status register |
|||
[0] |
ADC_SYNC |
RO |
0x0 |
ADC synchronization status. Will be set to 1 after the synchronization has been completed or while waiting for the synchronization signal in JESD204 systems. |
||
0x1c |
0x70 |
DRP_CNTRL |
ADC Interface Control & Status |
|||
[28] |
DRP_RWN |
RW |
0x0 |
DRP read (0x1) or write (0x0) select (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[27:16] |
DRP_ADDRESS |
RW |
0x000 |
DRP address, designs that contain more than one DRP accessible primitives have selects based on the most significant bits (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[15:0] |
RESERVED |
RO |
0x0000 |
Reserved for backward compatibility. |
||
0x1d |
0x74 |
DRP_STATUS |
ADC Interface Control & Status |
|||
[17] |
DRP_LOCKED |
RO |
0x0 |
If set indicates that the DRP has been locked. |
||
[16] |
DRP_STATUS |
RO |
0x0 |
If set indicates busy (access pending). The read data may not be valid if this bit is set (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
[15:0] |
RESERVED |
RO |
0x0000 |
Reserved for backward compatibility. |
||
0x1e |
0x78 |
DRP_WDATA |
ADC DRP Write Data |
|||
[15:0] |
DRP_WDATA |
RW |
0x0000 |
DRP write data (does not include GTX lanes). NOT-APPLICABLE if DRP_DISABLE is set (0x1). |
||
0x1f |
0x7c |
DRP_RDATA |
ADC DRP Read Data |
|||
[15:0] |
DRP_RDATA |
RO |
0x0000 |
DRP read data (does not include GTX lanes). |
||
0x20 |
0x80 |
ADC_CONFIG_WR |
ADC Write Configuration Data |
|||
[31:0] |
ADC_CONFIG_WR |
RW |
0x00000000 |
Custom Write to the available registers. |
||
0x21 |
0x84 |
ADC_CONFIG_RD |
ADC Read Configuration Data |
|||
[31:0] |
ADC_CONFIG_RD |
RO |
0x00000000 |
Custom read of the available registers. |
||
0x22 |
0x88 |
UI_STATUS |
User Interface Status |
|||
[2] |
UI_OVF |
RW1C |
0x0 |
User Interface overflow. If set, indicates an overflow occurred during data transfer at the user interface (FIFO interface). Software must write a 0x1 to clear this register bit. |
||
[1] |
UI_UNF |
RW1C |
0x0 |
User Interface underflow. If set, indicates an underflow occurred during data transfer at the user interface (FIFO interface). Software must write a 0x1 to clear this register bit. |
||
[0] |
UI_RESERVED |
RW1C |
0x0 |
Reserved for backward compatibility. |
||
0x23 |
0x8c |
ADC_CONFIG_CTRL |
ADC RD/WR configuration |
|||
[31:0] |
ADC_CONFIG_CTRL |
RW |
0x00000000 |
Control RD/WR requests to the device’s register map: bit 1 - RD (‘b1) , WR (‘b0), bit 0 - enable WR/RD operation. |
||
0x28 |
0xa0 |
USR_CNTRL_1 |
ADC Interface Control & Status |
|||
[7:0] |
USR_CHANMAX |
RW |
0x00 |
This indicates the maximum number of inputs for the channel data multiplexers. User may add different processing modules post data capture as another input to this common multiplexer. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x29 |
0xa4 |
ADC_START_CODE |
ADC Synchronization start word |
|||
[31:0] |
ADC_START_CODE |
RW |
0x00000000 |
This sets the startcode that is used by the ADCs for synchronization NOT-APPLICABLE if START_CODE_DISABLE is set (0x1). |
||
0x2e |
0xb8 |
ADC_GPIO_IN |
ADC GPIO inputs |
|||
[31:0] |
ADC_GPIO_IN |
RO |
0x00000000 |
This reads auxiliary GPI pins of the ADC core |
||
0x2f |
0xbc |
ADC_GPIO_OUT |
ADC GPIO outputs |
|||
[31:0] |
ADC_GPIO_OUT |
RW |
0x00000000 |
This controls auxiliary GPO pins of the ADC core NOT-APPLICABLE if GPIO_DISABLE is set (0x1). |
||
0x30 |
0xc0 |
PPS_COUNTER |
PPS Counter register |
|||
[31:0] |
PPS_COUNTER |
RO |
0x00000000 |
Counts the core clock cycles (can be a device clock or interface clock) between two 1PPS pulse. |
||
0x31 |
0xc4 |
PPS_STATUS |
PPS Status register |
|||
[0] |
PPS_STATUS |
RO |
0x0 |
If this bit is asserted there is no incomming 1PPS signal. Maybe the source is out of sync or it’s not active. |
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x80 |
0x200 |
TPL_CNTRL |
JESD, TPL Control |
|||
[3:0] |
PROFILE_SEL |
RW |
Selects one of the available deframer/framers from the transport layer.
Valid only if |
|||
0x81 |
0x204 |
TPL_STATUS |
JESD, TPL Status |
|||
[3:0] |
PROFILE_NUM |
RO |
Number of supported framer/deframer profiles. |
|||
0x90 + 0x2*n |
0x240 + 0x8*n |
TPL_DESCRIPTORn_1 |
JESD, TPL descriptor for profile n Where n is from 0 to 2. |
|||
[31:24] |
JESD_F |
RO |
Octets per Frame per Lane. |
|||
[23:16] |
JESD_S |
RO |
Samples per Converter per Frame. |
|||
[15:8] |
JESD_L |
RO |
Lane Count. |
|||
[7:0] |
JESD_M |
RO |
Converter Count. |
|||
0x91 + 0x2*n |
0x244 + 0x8*n |
TPL_DESCRIPTORn_2 |
JESD, TPL descriptor for profile n Where n is from 0 to 2. |
|||
[7:0] |
JESD_N |
RO |
Converter Resolution. |
|||
[15:8] |
JESD_NP |
RO |
Total Number of Bits per Sample. |
DWORD |
BYTE |
Reg Name |
Description |
|||
---|---|---|---|---|---|---|
BITS |
Field Name |
Type |
Default Value |
Description |
||
0x100 + 0x16*n |
0x400 + 0x58*n |
CHAN_CNTRLn |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[11] |
ADC_LB_OWR |
RW |
0x0 |
If set, forces ADC_DATA_SEL to 1, enabling data loopback |
||
[10] |
ADC_PN_SEL_OWR |
RW |
0x0 |
If set, forces ADC_PN_SEL to 0x9, device specific pn (e.g. ad9361) If both ADC_PN_TYPE_OWR and ADC_PN_SEL_OWR are set, they are ignored |
||
[9] |
IQCOR_ENB |
RW |
0x0 |
if set, enables IQ correction or scale correction. NOT-APPLICABLE if IQCORRECTION_DISABLE is set (0x1). |
||
[8] |
DCFILT_ENB |
RW |
0x0 |
if set, enables DC filter (to disable DC offset, set offset value to 0x0). NOT-APPLICABLE if DCFILTER_DISABLE is set (0x1). |
||
[6] |
FORMAT_SIGNEXT |
RW |
0x0 |
if set, enables sign extension (applicable only in 2’s complement mode). The data is always sign extended to the nearest byte boundary. NOT-APPLICABLE if DATAFORMAT_DISABLE is set (0x1). |
||
[5] |
FORMAT_TYPE |
RW |
0x0 |
Select offset binary (0x1) or 2’s complement (0x0) data type. This sets the incoming data type and is required by the post processing modules for any data conversion. NOT-APPLICABLE if DATAFORMAT_DISABLE is set (0x1). |
||
[4] |
FORMAT_ENABLE |
RW |
0x0 |
Enable data format conversion (see register bits above). NOT-APPLICABLE if DATAFORMAT_DISABLE is set (0x1). |
||
[3] |
RESERVED |
RO |
0x0 |
Reserved for backward compatibility. |
||
[2] |
RESERVED |
RO |
0x0 |
Reserved for backward compatibility. |
||
[1] |
ADC_PN_TYPE_OWR |
RW |
0x0 |
If set, forces ADC_PN_SEL to 0x1, modified pn23 If both ADC_PN_TYPE_OWR and ADC_PN_SEL_OWR are set, they are ignored |
||
[0] |
ENABLE |
RW |
0x0 |
If set, enables channel. A 0x0 to 0x1 transition transfers all the control signals to the respective channel processing module. If a channel is part of a complex signal (I/Q), even channel is the master and the odd channel is the slave. Though a single control is used, both must be individually selected. |
||
0x101 + 0x16*n |
0x404 + 0x58*n |
CHAN_STATUSn |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[12] |
CRC_ERR |
RW1C |
0x0 |
CRC errors. If set, indicates CRC error. Software must first clear this bit before initiating a transfer and monitor afterwards. |
||
[11:4] |
STATUS_HEADER |
RO |
0x00 |
The status header sent by the ADC.(compatible with AD7768/AD7768-4/AD777x). |
||
[2] |
PN_ERR |
RW1C |
0x0 |
PN errors. If set, indicates spurious mismatches in sync state. This bit is cleared if OOS is set and is only indicates errors when OOS is cleared. |
||
[1] |
PN_OOS |
RW1C |
0x0 |
PN Out Of Sync. If set, indicates an OOS status. OOS is set, if 64 consecutive patterns mismatch from the expected pattern. It is cleared, when 16 consecutive patterns match the expected pattern. |
||
[0] |
OVER_RANGE |
RW1C |
0x0 |
If set, indicates over range. Note that over range is independent of the data path, it indicates an over range over a data transfer period. Software must first clear this bit before initiating a transfer and monitor afterwards. |
||
0x102 + 0x16*n |
0x408 + 0x58*n |
CHAN_RAW_DATAn |
ADC Raw Data Reading Where n is from 0 to 15. |
|||
[31:0] |
ADC_READ_DATA |
RO |
0x00000000 |
Raw data read from the ADC. |
||
0x104 + 0x16*n |
0x410 + 0x58*n |
CHAN_CNTRLn_1 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[31:16] |
DCFILT_OFFSET |
RW |
0x0000 |
DC removal (if equipped) offset. This is a 2’s complement number added to the incoming data to remove a known DC offset. NOT-APPLICABLE if DCFILTER_DISABLE is set (0x1). |
||
[15:0] |
DCFILT_COEFF |
RW |
0x0000 |
DC removal filter (if equipped) coefficient. The format is 1.1.14 (sign, integer and fractional bits). NOT-APPLICABLE if DCFILTER_DISABLE is set (0x1). |
||
0x105 + 0x16*n |
0x414 + 0x58*n |
CHAN_CNTRLn_2 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[31:16] |
IQCOR_COEFF_1 |
RW |
0x0000 |
IQ correction (if equipped) coefficient. If scale & offset is implemented, this is the scale value and the format is 1.1.14 (sign, integer and fractional bits). If matrix multiplication is used, this is the channel I coefficient and the format is 1.1.14 (sign, integer and fractional bits). If SCALECORRECTION_ONLY is set, this implements the scale value correction for the current channel with the format 1.1.14 (sign, integer and fractional bits). NOT-APPLICABLE if IQCORRECTION_DISABLE is set (0x1). |
||
[15:0] |
IQCOR_COEFF_2 |
RW |
0x0000 |
IQ correction (if equipped) coefficient. If scale & offset is implemented, this is the offset value and the format is 2’s complement. If matrix multiplication is used, this is the channel Q coefficient and the format is 1.1.14 (sign, integer and fractional bits). NOT-APPLICABLE if IQCORRECTION_DISABLE is set (0x1). |
||
0x106 + 0x16*n |
0x418 + 0x58*n |
CHAN_CNTRLn_3 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[19:16] |
ADC_PN_SEL |
RW |
0x0 |
Selects the PN monitor sequence type (available only if ADC supports it).
|
||
[3:0] |
ADC_DATA_SEL |
RW |
0x0 |
Selects the data source to DMA. 0x0: input data (ADC) 0x1: loopback data (DAC) |
||
0x108 + 0x16*n |
0x420 + 0x58*n |
CHAN_USR_CNTRLn_1 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[25] |
USR_DATATYPE_BE |
RO |
0x0 |
The user data type format- if set, indicates big endian (default is little endian). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[24] |
USR_DATATYPE_SIGNED |
RO |
0x0 |
The user data type format- if set, indicates signed (2’s complement) data (default is unsigned). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[23:16] |
USR_DATATYPE_SHIFT |
RO |
0x00 |
The user data type format- the amount of right shift for actual samples within the total number of bits. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[15:8] |
USR_DATATYPE_TOTAL_BITS |
RO |
0x00 |
The user data type format- number of total bits used for a sample. The total number of bits must be an integer multiple of 8 (byte aligned). NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[7:0] |
USR_DATATYPE_BITS |
RO |
0x00 |
The user data type format- number of bits in a sample. This indicates the actual sample data bits. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x109 + 0x16*n |
0x424 + 0x58*n |
CHAN_USR_CNTRLn_2 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[31:16] |
USR_DECIMATION_M |
RW |
0x0000 |
This holds the user decimation M value of the channel that is currently being selected on the multiplexer above. The total decimation factor is of the form M/N. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
[15:0] |
USR_DECIMATION_N |
RW |
0x0000 |
This holds the user decimation N value of the channel that is currently being selected on the multiplexer above. The total decimation factor is of the form M/N. NOT-APPLICABLE if USERPORTS_DISABLE is set (0x1). |
||
0x10a + 0x16*n |
0x428 + 0x58*n |
CHAN_CNTRLn_4 |
ADC Interface Control & Status Where n is from 0 to 15. |
|||
[31:3] |
RESERVED |
RO |
0x00000000 |
Reserved for backward compatibility. |
||
[2:0] |
SOFTSPAN |
RW |
0x7 |
Softspan configuration register. |
Theory of Operation
Interfaces and Signals
Configuration Interface
The Peripheral features a register map configuration interface that can be
accessed through the AXI4-Lite S_AXI
port. The register map can be used to
configure the Peripheral’s operational parameters, query the current status of
the device and query the features supported by the device.
Link layer interface
The link layer interface description can be found in the User Data Interface section of the JESD204B/C Link Receive Peripheral IP.
Application layer interface
The application layer is connected to the deframer block output. The deframer module creates sample data from the lane mapped and formatted JESD204 link data based on the specified deframer configuration.
The data in the application layer interface adc_data
has the following
layout:
MSB LSB
[ MmSn, ..., MmS1, MnS0, ..., M1Sn, ... M1S1, M1S0, M0Sn, ... M0S1, M0S0 ]
Where MjSi refers to the i-th sample of the j-th converter. With m being the number of converters and n the number of samples per converter per beat.
The core asserts the enable
signal for each channel that is enabled by the
software.
Clock Monitor
The STATUS
(0x054
) register CLK_FREQ
field allows to determine
the clock rate of the device clock (link_clk
) relative to the AXI interface
clock (s_axi_aclk
). This can be used to verify that the device clock is
running at the expected rate.
The number is represented as unsigned 16.16 format. Assuming a 100MHz processor clock, this corresponds to a resolution of 1.523kHz per LSB. A raw value of 0 indicates that the link clock is currently not active.
Data Formatter
The component is configured by the CHAN_CNTRL
register
FORMAT_SIGNEXT,FORMAT_TYPE,FORMAT_ENABLE
fields. The block introduces one
clock cycle latency.
PRBS Check
The block can monitor and compare the incoming deframed raw data against
PN9, PN23 and PN7, PN15 (if enabled) patterns selected by the ADC_PN_SEL
field of CHAN_CNTRL_3
register.
ADC_PN_SEL |
PN |
ENABLE |
---|---|---|
0 |
PN9 |
1 |
1 |
PN23 |
1 |
4 |
PN7 |
PN7_ENABLE |
5 |
PN15 |
PN15_ENABLE |
Before performing these tests you need to make sure that the ADC OUTPUT FORMAT
is set according to the TWOS_COMPLEMENT
synthesis parameter.
For each channel, mismatches are reported in PN_ERR
and PN_OOS
fields of
the CHAN_STATUS
register.
External synchronization
An external synchronization signal adc_sync_in
can be used to trigger data
movement from the link layer to user application layer.
The external synchronization signal should be synchronous with the ADC clock. Synchronization will be done on the rising edge of the signal.
The self clearing SYNC
control bit from the CNTRL (0x44)
register,
will arm the trigger logic to wait for the external sync signal. The
ADC_SYNC
status bit from SYNC_STATUS (0x68)
register, will show that
the synchronization is armed, but the synchronization signal has not yet been
received.
Once the sync signal is received, the data will start to flow and the
ADC_SYNC
status bit will reflect that with a deassertion.
While the synchronization mechanism is armed, the adc_rst
output signal is
set such that downstream logic can be cleared, to have a fresh start once the
trigger is received.
Software Support
Warning
To ensure correct operation, it is highly recommended to use the Analog Devices provided JESD204B/C software packages for interfacing the peripheral. Analog Devices is not able to provide support in case issues arise from using custom low-level software for interfacing the peripheral.
Restrictions
Reduced number of octets-per-frame (F
) settings. The following values are
supported by the peripheral: 1, 2, 4
Starting from this commit this restriction no longer applies.
Supported Devices
JESD204B Analog-to-Digital Converters
AD6673: 80 MHz Bandwidth, Dual IF Receiver
AD6674: 385 MHz BW IF Diversity Receiver
AD6676: Wideband IF Receiver Subsystem
AD6677: 80 MHz Bandwidth, IF Receiver
AD6684: 135 MHz Quad IF Receiver
AD6688: RF Diversity and 1.2GHz BW Observation Receiver
AD9207: 12-Bit, 6 GSPS, JESD204B/JESD204C Dual Analog-to-Digital Converter
AD9208: 14-Bit, 3GSPS, JESD204B, Dual Analog-to-Digital Converter
AD9209: 12-Bit, 4GSPS, JESD204B/C, Quad Analog-to-Digital Converter
AD9213: 12-Bit, 10.25 GSPS, JESD204B, RF Analog-to-Digital Converter
AD9234: 12-Bit, 1 GSPS/500 MSPS JESD204B, Dual Analog-to-Digital Converter
AD9250: 14-Bit, 170 MSPS/250 MSPS, JESD204B, Dual Analog-to-Digital Converter
AD9625: 12-Bit, 2.6 GSPS/2.5 GSPS/2.0 GSPS, 1.3 V/2.5 V Analog-to-Digital Converter
AD9656: Quad, 16-Bit, 125 MSPS JESD204B 1.8 V Analog-to-Digital Converter
AD9680: 14-Bit, 1.25 GSPS/1 GSPS/820 MSPS/500 MSPS JESD204B, Dual Analog-to-Digital Converter
AD9683: 14-Bit, 170 MSPS/250 MSPS, JESD204B, Analog-to-Digital Converter
AD9690: 14-Bit, 500 MSPS / 1 GSPS JESD204B, Analog-to-Digital Converter
AD9691: 14-Bit, 1.25 GSPS JESD204B, Dual Analog-to-Digital Converter
AD9694: 14-Bit, 500 MSPS JESD204B, Quad Analog-to-Digital Converter
AD9695: 14-Bit, 1300 MSPS/625 MSPS, JESD204B, Dual Analog-to-Digital Converter Analog-to-Digital Converter
AD9083: 16-Channel, 125 MHz Bandwidth, JESD204B Analog-to-Digital Converter
AD9094: 8-Bit, 1 GSPS, JESD204B, Quad Analog-to-Digital Converter
JESD204B RF Transceivers
AD9371: SDR Integrated, Dual RF Transceiver with Observation Path
AD9375: SDR Integrated, Dual RF Transceiver with Observation Path and DPD
ADRV9009: SDR Integrated, Dual RF Transceiver with Observation Path
ADRV9008-1: SDR Integrated, Dual RF Receiver
ADRV9008-2: SDR Integrated, Dual RF Transmitter with Observation Path
JESD204B/C Mixed-Signal Front Ends
More Information
Technical Support
Analog Devices will provide limited online support for anyone using the core with Analog Devices components (ADC, DAC, Video, Audio, etc) via the EngineerZone.